

 Navigation

 	
 index

 	Computer Networking 0.1 documentation

Welcome to Introduction to Computer Networking’s documentation!

Contents:

This page is under construction. Check back soon...

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2015, Deniz Gurkan and Nicholas Bastin, University of Houston.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	Computer Networking 0.1 documentation

Index

 Copyright 2015, Deniz Gurkan and Nicholas Bastin, University of Houston.
 Created using Sphinx 1.3.5.

 _images/self-learning1.png
&

transparent
bridge

_images/lab9observations1.png
Packet Received
dst_mac, src_mac

nw_dst, nw_src

l

dst_mac is configured

DROP <—no
on router?

yes

nw_dst is router
interface?

Handle in
router CPU

no
+ sh ip ospf route

Do we have a route to
nw_dst?

Send ICMP <«no

Unreachable

yes

_images/sshProcesses.png
create
using ssh
key
generation
tools:

run in compnet VM provide public key to:
inside .ssh/

ssh public key:
geni_DG.pub such as ssh (geni), sftp,
bitbucket

ssh private key: |
geni_DG run compnet
VM
|

l

your .ssh

check your .ssh your .ssh
directory for your directory for your

private key and private key
allow you to login

directory to verify
a matching
private key

_images/key_SSH1.png
private
key
YOUR personal key
that matches this lock

ubke
anmpnety by pubkey
VM i phvate
key NEW lock on the door
VMware WS/F

Laptop or lab PC User/Local 0S: MAC, Windows

_static/up.png

_images/sshonGENI.png
=+. Key-based SSH on GENI

GENI SSH
pubkey
A, g cougarnet ID - dgurkan
g GENI ID — dgurka01
GENI SSH i
\ private
private e key
key YOUR
personal key
that matches
Make SSH g t::St:ECk
reservatio_ns on rivate ubkey
e oy YOUR lock on
the door

User/Local OS: Ubuntu, MAC, Windows

_static/down-pressed.png

_images/self-learning2.png
BRIDGE: ‘dp0’

;,j

transparent
bridge

tutorials/journal.html

 Navigation

 		
 index

 		Computer Networking 0.1 documentation »

Pedagogy

Virtualized environments are known to be the most popular media to teach
computer networking with the most flexibility. Instantiation of network
nodes, configuration, protocol behaviour observations, and analysis is
possible in a reconfigurable environment [1]. Current testbeds help in creation
of such environments. One such testbed to be used in this class is the
GENI testbed. Virtualized environments are common in lab development
in security research [2], [3], and [4].

The goal in applied teaching of computer networking is to base all content
on observations of the behaviour, especially when it comes to explaining
computer networking protocols. Although it may be valuable to recite the
inner workings of protocols, their underlying algorithms, and the motivation
behind the design and architecture, such descriptive content fails to
illustrate the actual behaviour of the protocol when network nodes are
participating in an actual transfer of data. For example, the explanation
of Ethernet protocol usually involves the frame format, the addressing
scheme and its associated choice of link layer addresses, the history of
evolution from collision-based architectures (ALOHA, multiple access
systems, collision domains, etc.), some aspects of algorithms involved in
mitigating the collisions (CSMA/CD, exponential back-off, etc.). By the
time, modern systems are stated as being primarily switched networks,
all history and associated technical material becomes irrelevant. Furthermore,
students are exposed to material they would have to absorb with no
applicability to the current practice. In order to stay always on the
forefront of what is applicable, what behaviour may be expected, and how
to manage, control, and configure networks, all content should be based on
what may be observed in a lab setting.

We decided to design the content of the class based on observable behaviour
of protocols, network architecture, and applications. That’s why, the class
includes a high overhead of testbed interface skill development. Required
skills to conduct the lab work in this course:

		Virtualization environments such as VMware workstation/fusion

		Working with a VM on student’s laptop host
		Putty/terminal access from host to VM

		Basic linux command line access

		Moving files between host and VM

		Working with version control

		Python programming

		Basic understanding of a virtualized nationwide testbed

Lab Manuals: Observations and Assessment of Learning Outcomes

We aim to minimize the overhead in the process of gathering the material for
submission to the instructor while maximizing the learning experience. In
virtualized environments, the multiple layers of abstraction, a sense of
being in an unreal environment (e.g., no actual switch to configure, no
physical host present, and no physical wires to call links), and multitude
of skills necessary to get to the observation stage is a detriment to the
learning experiences. That is, students may arrive at the observation stage
after a setup period that exceeds more than half of the allocated lab hours
and by that time, while they are supposed to make analytical sense of the
observations the ultimate goal of the lab may have become too vague and
distant. Therefore, lab manuals will not end with a traditional submission
set of screenshots, code, etc., rather, a reasoning assignment will be
created to measure the effectiveness of the learning experience. Such a
reasoning use case will depend on the lab setup.

Lab1

Objective: Prepare host environment, user credential settings, portal setup,
and the lab’s virtual machine that hosts geni-lib. Explain different implementations
of to be ready to reserve resources on GENI testbed.

Skills Required for Activities: basic Linux command line interface with
simple editing, copying of files, creating keys for ssh, moving files,
creating directories.

[image: ../_images/key_SSH1.png]
The private and public key pair is setting up a lock and a key to access our
hosts (resources) on GENI and other such environments. The virtual machine (VM)
to be used in this lab will be accessed through such a key pair. Therefore, a
public key is placed within the VM while the private key on student’s home
devices (windows and mac laptops or the lab desktops) will be used to access the
VM on the host or on GENI testbed.

[image: ../_images/key_SSH2.png]
The private key that matches the public key is the only key that can open the
door - therefore, giving access to the user on the VM.

[image: ../_images/geniand4421lab.png]
The testbed view over the network is a scaled-up version of the individual systems
in the 4421 labs. A host computer (student laptop or lab desktop) has a hypervisor
enabling the hosting of a VM. Similarly, GENI infrastructure is composed of such
virtualization architectures to offer such access and resource usage.

Learning Outcomes:

		Basic linux environment, command line familiarity,
copying files between VM and host, a personal cheat sheet creation for
the class.

		First knowledge and experience with public/private key pair
generation and pure key-based access to virtual machines.

		First time installation of a hypervisor into their systems as well as
lab computers along with importing of a virtual machine (VM) provided
as part of the labs.

Assessment of Learning Outcomes: Students will be able to create a file
in their host machines and copy this file into their virtual machines. And
then, students will ssh into their VM, create a new directory in their VM,
move the file from their host into this directory while in the lab. A new
key pair can be generated to illustrate how key exchange works.

Teaching Journal: The system differences between Windows and Mac Operating
Systems along with the Linux-based operating systems pose a steep learning
curve challenge in the labs. While students are able to help each other,
windows users are not able to utilize the easy terminal access that Mac users
have. And, on the other hand, Mac users are not able to adapt to the terminal
command line since their expectation has always been the drag-and-drop user
interface with strict mouse-oriented interaction.

Lab2

Objective: Learn and observe how geni-lib Python interpreter command line
works. Retrieve advertisement from the GENI federation to investigate what
resources may be available.

[image: ../_images/sshonGENI.png]
Skills Required for Activities: Interact with a Python interpreter command
line to issue script commands. Utilize command line and Python object directory
search, entry, and help to navigate the geni-lib library.

Learning Outcomes:

		Students will be able to interact with Linux command line interface (CLI)
to accomplish changing directories, copying files, checking what files are
where, and creating their SSH keys.

		Students will be able to create an automated environment for their SSH
sessions with future GENI hosts and their current computer networking
virtual machine (VM). For windows users, create and save an ssh and a
winscp session for the lab VM using their private key and user name. For
MAC users, create a .ssh/config file with ssh login info using their
private key and login name.

		Continue on with geni-lib experimentation to familiarize with the python
interpreter and the GENI federation.

		Students will be able to setup their geni-lib environment with their own
context using the context-from-bundle utility.

Assessment of Learning Outcomes: A demonstration that student’s genish
session runs as expected with a relevant reply from the federation when the
student requests an advertisement of resources in an aggregate manager. Instructor
and the teaching assistant marked this as working on the student VM by the end
of the lab session.

Teaching Journal: Students had a difficult time following what an error
message may say. There is a lack of trust in reading instructions on the screen
and then figuring out what may be missing in their system and setup. This is
mostly due to them lacking Linux CLI skills. By going through many samples from
station to station we have tried to emphasize the reading of the error messages.

Lab3

Objective: Reserve a topology of 3 hosts and a transparent bridge
to observe self-learning in the bridge while sending raw Ethernet frames
using scapy and investigating received traffic at the hosts where flooded
traffic has arrived using tcpdump.

The progression of how a self-learning bridge may populate its forwarding
table as frames are transmitted by the hosts will be investigated and
observed in this lab:

[image: ../_images/self-learning1.png]
[image: ../_images/self-learning2.png]
[image: ../_images/self-learning3.png]
[image: ../_images/self-learning4.png]
Skills Required for Activities:
Linux commands to create a TMUX in a terminal in addition to basic understanding
of running tcpdump and scapy on each host terminal. Also, issuing
calls to methdos such as listresources and dumpMACs in geni-lib
shell within the aggregate manager at which the reservation resides.

Learning Outcomes:

		Basic understanding of what is observed at tcpdump output.

		Information on how to generate simple Ethernet frames using scapy.

		Terminal manipulation techniques to build an advanced testing and
observation environment.

		Self learning of a transparent bridge through basic Ethernet frames
sent by connected hosts. The expiration time for each MAC address
entry for each port in the forwarding table.

		The behavior of the learning bridge before and after a MAC of a
directly-attached host has been “learned”:

		Before learning: bridge floods all other ports where it has not received
a frame from and floods using the same incoming frame

		At receipt of frame: bridge marks the incoming port with the source
MAC address of the frame as learned destination MAC in the forwarding
table

		After learning: new frames destined to the learned host at that port
are directly forwarded to that port with no flooding.

Assessment of Learning Outcomes:

		Student will be able to reserve 3 hosts and a bridge connected in a
star topology.

		Student will be able to print their manifest on the GENISH python
interpreter to investigate the host login information.

		Student will be able to enter host login information into their work
environment automation: PUTTY sessions in Windows, “config” file in
Mac systems.

		Student will be able to login to their hosts on GENI environment with
their key pairs.

Teaching Journal:
The students were still struggling with the SSH connectivity issues due
to the formatting differences between public keys generated at Windows OS
and Mac. Most of the time, public key was not matching the private key
although they were generated correctly. PUTTYGEN key pair generation has some
incompatibility with the Linux and Mac cases. GENI-LIB is being extended to
catch such error cases and either raise a knowledgable exception or correct the
errors from such incompatibilities through internal means (e.g., remove the
extra “n”, etc.).

Need to include a diagram to show how each key works within the lab framework:
The public key provided to the geni-lib is placed into the hosts on GENI
resource environment when making a reservation; the private key that matches
the public key is provided to the PUTTY session or the “config” file; hostname,
user name, port number need to match the information provided inside the GENI
manifest.

The diagram of relationships between all software systems and the key generation
process:

[image: ../_images/context_bundle.png]
Need to provide basic search, directory, and help mechanisms within python
interpreters. Basic knowledge on classes, calling objects, mechanisms for method
calls, investigating what arguments each method requires, and how to assign
values to variables and what type considerations there are in referring to such
variables (e.g., integer, string, etc.).

Need to provide an example work environment view for the students to replicate
in their machines: show all terminal screens with host login, genish terminal
that interacts with the geni and reservations, etc.

Need to go through SCAPY to show some basic packet generation principles.

Need to go through TCPDUMP to show how network packets are retrieved and
further displayed on the terminal.

Lab4

Objective: Experiment with packet sending features of scapy and the
packet receipt/analysis interfaces with the tcpdump while conducting
unfinished lab for self-learning. The main learning objective is to understand
the basic principle of how self-learning at a transparent bridge works through
actively sending Ethernet frames through such a bridge while observing the
forwarding table updated and frames reach host(s) depending on the mode of
the bridge, either flood or unicast.

Skills Required for Activities:

		Python interpreter interface to scapy and genish.

		tcpdump command options and analysis of command line output.

		TMUX (or similar tool) to make quick observations on which hosts may be
receiving what frames within a broadcast domain and outside.

Learning Outcomes:

		Students will learn to navigate through advanced management of terminals
to observe tcpdump output while sending hand-crafted frames in scapy.

		Students will learn how to compose Ethernet frames and send them through
python interpreter interface of the libraries in scapy.

		Students will learn how a transparent layer 2 Ethernet bridge does
self-learning of the attached hosts’ MAC addresses and populates its
forwarding table accordingly.

		Students will observe and verify that bridges flood when learning and
once an entry is in place for an attached host, they will forward
directly to the destination.

Assessment of Learning Outcomes:

		Student will be able to run a reservation script, login to reserved
hosts, run a simple traffic while also running tcpdump to observe
transmitted and received traffic on the end hosts.

		Students will understand the concept of self-learning in a switch both
through basic observation of the protocol in action and within an example
use case that they will walk through how the protocol may work. A screenshot
of their observations will be submitted.

		A quiz is given on self-learning in the next lab session to test student
learning performance. Given a forwarding table sample in a bridge, how
would a set of incoming frames be treated by the bridge?

[image: tutorials/pictures/quiz-self-learning.png]
Teaching Journal:
We included the expected submission items in the lab slides:
Progression of an empty forwarding table one by one with mac entries of
the 3 hosts within your slice – screen snapshots for submission and
call TA/instructor to demo:

		ifconfig per host

		empty table

		Ethernet frame sent per host

		table update each time

Students had a difficult time understanding why we have ssh access to hosts
and no such access to the transparent bridge. A diagram is helpful in
explaining the relationship of all software/application interfaces with the
software systems in GENI.

[image: ../_images/sshVSdatapath.png]
Students were not sure as to what to submit at the end of the lab. There is a
tradeoff between providing what should be submitted in a very clear list of
items such as tcpdump results when such and such happened, send frame and then
copy paste tcpdump at host n, etc. vs letting the free learning phase take hold
for a while. The setup of the experiment in addition to advanced view environment
such as TMUX and other tools blur the actual end goal of observing self learning
happen on the transparent bridge and flooding happening on all other ports. We
had to speak to students in every station to emphasize this point. Therefore, we
kept the submission to a simple screenshot of their environment when they sent
frames from each host and observed the forwarding table being populated.

Students requested that the instructor go through the steps of the experiment
on her computer with the screen projected to show how to setup and run the
commands. This helped students understand the mechanics of the sequence of
events and how navigation between the screens of terminals should happen.

Lab5

Objective: Observe and investigate how transparent bridges “scope” their
forwarding bahavior with VLANs. Learn how endhosts are included in a broadcast
domain through port-based VLANs on a transparent bridge.

The topology for the lab is:

[image: ../_images/vlantopology.png]
Skills Required for Activities:

		Basic understanding and reading capability of Ethernet frames with VLAN
tags and otherwise.

		Advance the skills in interacting with GENI by deleting previously reserved
resources using the deletesliver call to the aggregate manager.

		Visualize the topology being reserved using the .dot file created by
the utility in geni-lib.

Learning Outcomes:

		Students will learn how port-based VLANs separate broadcast domains within
one transparent bridge by observing an empty forwarding table at the bridge
and how bridge floods only within their assigned VLAN.

		Students will observe and learn how a VLAN separated bridge treats a port that
is not assigned to a VLAN. The trunk port is observed by running tcpdump
on a host connected to such a port.

Assessment of Learning Outcomes:

		A quiz is conducted (open notes, laptops, internet) on how VLAN isolation
works in a transparent bridge with VLANs assigned to some ports and no VLANs
on one port on the switch. This is conducted during class 3 days after the
lab has been conducted.

[image: tutorials/pictures/quiz-vlanBcastDomain.png]

		A submission text file is required with pre-defined fields:
		Testing VLANs:
* host1 and host2 are on the same L2 broadcast domain
* host3, and host4 are in the same L2 broadcast domain
* if host1 sends a VLAN150 frame to host2, bridge1 should flood within VLAN150 (hosts 3 and 4 will not receive this frame)
* host5 listens using tcpdump seeing all tagged frames – trunk port

		Testing subnets:
* host1 and host2 are in the same L3 broadcast domain
* host3 and host4 are in the same L3 broadcast domain

		Make your reservation for today’s topology and submit:
* text of your manifest
* MAC addresses of all of your hosts
* IP address setup of all of your hosts
* frame and packet preparation scapy commands
* trunk port vlan-tagged frames at tcpdump
* receipt of frames only from within VLAN at hosts
* ARP entries for all hosts

Teaching Journal:
Conducted a quiz on self learning of bridges. Learning assessment of lab5 includes
the resulting performance from this quiz.

Emphasize trunk port showing tagged frames

Emphasize how broadcast domains have been partitioned in the topology through
port-based VLAN assignments within the bridge using a picture:

[image: ../_images/vlanPorts.png]
The setup instructions for this bridge configuration involved assigned the
VLAN id’s 150 and 250 to specific ports and not assigning any VLAN to the port
where host5 is connected to:

VTS.connectInternalCircuit((d1, 150), c1)
VTS.connectInternalCircuit((d1, 150), c2)
VTS.connectInternalCircuit((d1, 250), c3)
VTS.connectInternalCircuit((d1, 250), c4)
VTS.connectInternalCircuit(d1, c5)

Need to modify figures to remove VLAN id’s inside host references and put
subnet-specific information instead.

Showed how to submit the observations of the experiment using a text file
and indicate what needs to be submitted towards the end of the lab.

The fields that are required in the text file are determined and announced
to the class during the last 1 hour of the lab session of 3 hours. This is
delayed on purpose so that students will spend time examining what they
are observing, TA and instructor have a chance to walk around and discuss
the results, and also have the time to present running of the experiment
at the instructor’s projected session on board.

A sample text file has been prepared while the lab is in session through
instructor’s own experiment and observations:

MAC Addresses of hosts:
host1 MAC e2:23:7b:67:23:30
host2 MAC 32:22:83:b5:2d:a9
host3 MAC 0a:96:75:dc:3c:13
host4 MAC 96:2c:43:c3:39:c5
host5 MAC 36:51:70:96:b4:1b

host1 to host2
frame = Ether(src = "e2:23:7b:67:23:30", dst = "32:22:83:b5:2d:a9")
sendp(frame, iface = "eth1")

host2 to host1
frame = Ether(dst = "e2:23:7b:67:23:30", src = "32:22:83:b5:2d:a9")
sendp(frame, iface = "eth1")

on host2:
listening on eth1, link-type EN10MB (Ethernet), capture size 65535 bytes
16:56:29.715007 e2:23:7b:67:23:30 (oui Unknown) > 32:22:83:b5:2d:a9 (oui Unknown), \
802.3, length 14: [|llc]
16:58:05.334663 32:22:83:b5:2d:a9 (oui Unknown) > e2:23:7b:67:23:30 (oui Unknown), \
802.3, length 14: [|llc]

on host1:
listening on eth1, link-type EN10MB (Ethernet), capture size 65535 bytes
16:56:29.714704 e2:23:7b:67:23:30 (oui Unknown) > 32:22:83:b5:2d:a9 (oui Unknown), \
802.3, length 14: [|llc]
16:58:05.335024 32:22:83:b5:2d:a9 (oui Unknown) > e2:23:7b:67:23:30 (oui Unknown), \
802.3, length 14: [|llc]

on host5:
listening on eth1, link-type EN10MB (Ethernet), capture size 65535 bytes
16:56:29.715010 e2:23:7b:67:23:30 (oui Unknown) > 32:22:83:b5:2d:a9 (oui Unknown), \
ethertype 802.1Q (0x8100), length 18: vlan 150, p 0, [|llc]

>>> PP(VTSAM.StarLight.dumpMACs(context,"testSW",["bridge1"]))
{'bridge1': [['port', 'VLAN', 'MAC', 'Age'],
 ['1', '150', 'e2:23:7b:67:23:30', '10'],
 ['2', '150', '32:22:83:b5:2d:a9', '7']]}

host3 to host4
frame = Ether(dst = "96:2c:43:c3:39:c5", src = "0a:96:75:dc:3c:13")
sendp(frame, iface = "eth1")

host4 to host3
frame = Ether(src = "96:2c:43:c3:39:c5", dst = "0a:96:75:dc:3c:13")
sendp(frame, iface = "eth1")

on host3:
listening on eth1, link-type EN10MB (Ethernet), capture size 65535 bytes
17:11:18.610655 0a:96:75:dc:3c:13 (oui Unknown) > 96:2c:43:c3:39:c5 (oui Unknown), \
802.3, length 14: [|llc]
17:11:47.010922 96:2c:43:c3:39:c5 (oui Unknown) > 0a:96:75:dc:3c:13 (oui Unknown), \
802.3, length 14: [|llc]

on host4:
listening on eth1, link-type EN10MB (Ethernet), capture size 65535 bytes
17:11:18.610976 0a:96:75:dc:3c:13 (oui Unknown) > 96:2c:43:c3:39:c5 (oui Unknown), \
802.3, length 14: [|llc]
17:11:47.010629 96:2c:43:c3:39:c5 (oui Unknown) > 0a:96:75:dc:3c:13 (oui Unknown), \
802.3, length 14: [|llc]

on host5:
listening on eth1, link-type EN10MB (Ethernet), capture size 65535 bytes
16:56:29.715010 e2:23:7b:67:23:30 (oui Unknown) > 32:22:83:b5:2d:a9 (oui Unknown), \
ethertype 802.1Q (0x8100), length 18: vlan 150, p 0, [|llc]
17:11:18.610983 0a:96:75:dc:3c:13 (oui Unknown) > 96:2c:43:c3:39:c5 (oui Unknown), \
ethertype 802.1Q (0x8100), length 18: vlan 250, p 0, [|llc]

MAC table on bridge:
>>> PP(VTSAM.StarLight.dumpMACs(context,"testSW",["bridge1"]))
{'bridge1': [['port', 'VLAN', 'MAC', 'Age'],
 ['3', '250', '0a:96:75:dc:3c:13', '89'],
 ['4', '250', '96:2c:43:c3:39:c5', '60']]}

host1 to host4
frame = Ether(src = "e2:23:7b:67:23:30", dst = "96:2c:43:c3:39:c5")
sendp(frame, iface = "eth1")

on host1:
listening on eth1, link-type EN10MB (Ethernet), capture size 65535 bytes
16:56:29.714704 e2:23:7b:67:23:30 (oui Unknown) > 32:22:83:b5:2d:a9 (oui Unknown), \
802.3, length 14: [|llc]
16:58:05.335024 32:22:83:b5:2d:a9 (oui Unknown) > e2:23:7b:67:23:30 (oui Unknown), \
802.3, length 14: [|llc]
17:01:33.774610 e2:23:7b:67:23:30 (oui Unknown) > 32:22:83:b5:2d:a9 (oui Unknown), \
802.3, length 14: [|llc]
17:01:36.942997 32:22:83:b5:2d:a9 (oui Unknown) > e2:23:7b:67:23:30 (oui Unknown), \
802.3, length 14: [|llc]
17:39:03.486613 e2:23:7b:67:23:30 (oui Unknown) > 96:2c:43:c3:39:c5 (oui Unknown), \
802.3, length 14: [|llc]

on host4:
listening on eth1, link-type EN10MB (Ethernet), capture size 65535 bytes
17:11:18.610976 0a:96:75:dc:3c:13 (oui Unknown) > 96:2c:43:c3:39:c5 (oui Unknown), \
802.3, length 14: [|llc]
17:11:47.010629 96:2c:43:c3:39:c5 (oui Unknown) > 0a:96:75:dc:3c:13 (oui Unknown), \
802.3, length 14: [|llc]

on host2:
listening on eth1, link-type EN10MB (Ethernet), capture size 65535 bytes
16:56:29.715007 e2:23:7b:67:23:30 (oui Unknown) > 32:22:83:b5:2d:a9 (oui Unknown), \
802.3, length 14: [|llc]
16:58:05.334663 32:22:83:b5:2d:a9 (oui Unknown) > e2:23:7b:67:23:30 (oui Unknown), \
802.3, length 14: [|llc]
17:01:33.774931 e2:23:7b:67:23:30 (oui Unknown) > 32:22:83:b5:2d:a9 (oui Unknown), \
802.3, length 14: [|llc]
17:01:36.942593 32:22:83:b5:2d:a9 (oui Unknown) > e2:23:7b:67:23:30 (oui Unknown), \
802.3, length 14: [|llc]
17:39:03.486983 e2:23:7b:67:23:30 (oui Unknown) > 96:2c:43:c3:39:c5 (oui Unknown), \
802.3, length 14: [|llc]

on host5:
listening on eth1, link-type EN10MB (Ethernet), capture size 65535 bytes
16:56:29.715010 e2:23:7b:67:23:30 (oui Unknown) > 32:22:83:b5:2d:a9 (oui Unknown), \
ethertype 802.1Q (0x8100), length 18: vlan 150, p 0, [|llc]
17:11:18.610983 0a:96:75:dc:3c:13 (oui Unknown) > 96:2c:43:c3:39:c5 (oui Unknown), \
ethertype 802.1Q (0x8100), length 18: vlan 250, p 0, [|llc]
17:39:03.486991 e2:23:7b:67:23:30 (oui Unknown) > 96:2c:43:c3:39:c5 (oui Unknown), \
ethertype 802.1Q (0x8100), length 18: vlan 150, p 0, [|llc]

MAC table at the bridge:
>>> PP(VTSAM.StarLight.dumpMACs(context,"testSW",["bridge1"]))
{'bridge1': [['port', 'VLAN', 'MAC', 'Age'],
 ['1', '150', 'e2:23:7b:67:23:30', '109']]}

Lab6

Objective: The lab will be on observation of L3 broadcast domains using subnets. Subnets
can segregate networks at layer 3 through IP addressing. Also, students will be tested
on their ability to instantiate a topology on GENI without readily available scripts.

Skills Required for Activities:

		Basic IP address setup commands in linux.

		Basic IP route table retrieval commands in linux.

		Usage of ping to test connectivity between hosts at L3.

		Basic understanding of how to create a request for specific network
topology and connections for hosts on GENI testbed.

Learning Outcomes:

		Students will experience setting up a topology on their own to create a self-learning
bridge experiment with one bridge and 2 hosts.

		Students will learn how to set an IP address of a host through command line.

		Students will learn how to test L3 reachability using ping tool for echo request
within subnets and outside of subnets.

		Students will observe how L3 reachability effects the communication between hosts through
tcpdump and echo response packets generated by ping.

Assessment of Learning Outcomes:
An assessment of the knowledge in creation of a simple bridge topology has been conducted. Given
a time limit, how many students can reserve a topology, enter login information into their
preferred way of ssh application, and run an experiment of self-learning?

Students were asked to submit a text file with their experiment results:

		Script for the request

		Manifest of their reservation

		IP address setup commands on each host

		ip route sh result from each host

		The result of a ping from host1 to host5 and the result of a ping from host2
to host5 (or host1, still within the same VLAN but a different subnet).

Students were also given an assignment to create a request for a simple two host and
a self-learning bridge topology:

		Delete any existing slivers on all your slices: display a proof that you do not have
any resources left on your slices by calling listresources on them

		Reserve a topology of two hosts and a transparent bridge

		Prepare a text file where you copy and paste
* MAC addresses of hosts
* scapy commands to be used to send frames from each host
* tcpdump from each host at EVERY send of a packet with scapy
* forwarding table of the bridge at every scapy message sent

The topology of the simple network and an empty forwarding table is included:

[image: ../_images/simpleTopologyAssignment.png]
Teaching Journal:
Anatomy of a request is described with details on the code in python interpreter:

put request object in r
r = VTS.Request()

I need a bridge of kind OVS, L2 image
d1 = r.Datapath(VTS.OVSL2Image(), "bridge1")

I need a host of kind uh:cn4421 image
c1 = r.Container(VTS.Image("uh:cn4421"), "host1")

connect hosts to bridge and bridges to each other, and use VLANs or not…
VTS.connectInternalCircuit((d1, 100), c1)
VTS.connectInternalCircuit(d1, c7)
VTS.connectInternalCircuit(d1, d2)

Figure out what is available and where through polling for an advertisement:

ad = VTSAM.StarLight.listresources(context)
>>> print ad.text
<rspec xmlns:vts="http://geni.bssoftworks.com/rspec/ext/vts/ad/1"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:geni="http://www.geni.net/resources/rspec/3"
xsi:schemaLocation="http://www.geni.net/resources/rspec/3
http://www.geni.net/resources/rspec/3/request.xsd" type="advertisement">
 <vts:circuit-planes/>
 <vts:images>
 <vts:image name="bss:ovs-202" type="raw"/>
 <vts:image name="uh:cn4421" type="container"/>
 </vts:images>
 <vts:datapaths/>
</rspec>

How to read a manifest returned from a request so we can login to our hosts
and verify the topology:

>>> print vManifest.text
<rspec xmlns:geni="http://www.geni.net/resources/rspec/3"
xmlns:sdn="http://geni.bssoftworks.com/rspec/ext/sdn/manifest/
 <vts:datapath client_id="bridge1" image="bss:ovs-201" \
sliver_id="urn:publicid:IDN+starlight.vts.bsswks.net+sliver+20
 <vts:port client_id="bridge1:3" remote-clientid="host4:0" \
 type="internal" vlan-id="100"/>
 <vts:port client_id="bridge1:2" remote-clientid="host3:0" \
 type="internal" vlan-id="200"/>
 <vts:port client_id="bridge1:1" remote-clientid="host2:0" \
 type="internal" vlan-id="100"/>
 <vts:port client_id="bridge1:0" remote-clientid="host1:0" \
 type="internal" vlan-id="100"/>
 <vts:port client_id="bridge1:5" remote-clientid="bridge2:0" type="internal"/>
 <vts:port client_id="bridge1:4" remote-clientid="host7:0" type="internal"/>
 </vts:datapath>
 <vts:datapath client_id="bridge2" image="bss:ovs-201" \
 sliver_id="urn:publicid:IDN+starlight.vts.bsswks.net+sliver+20
 <vts:port client_id="bridge2:0" remote-clientid="bridge1:5" type="internal"/>
 <vts:port client_id="bridge2:1" remote-clientid="host5:0" \
 type="internal" vlan-id="100"/>
 <vts:port client_id="bridge2:2" remote-clientid="host6:0" \
 type="internal" vlan-id="200"/>
 </vts:datapath>

 <vts:container client_id="host1" image="uh:cn4421"
 sliver_id="urn:publicid:IDN+starlight.vts.bsswks.net+sliver+204c8
 <geni:services>
 <geni:login authentication="ssh-keys" hostname="starlight.vts.bsswks.net" \
 port="33513" username="root"/>
 </geni:services>
 <vts:port client_id="host1:0" mac-address="72:91:76:1d:d0:9a" \
 remote-clientid="bridge1:0" type="internal"/>
 </vts:container>
 <vts:container client_id="host2" image="uh:cn4421" \
 sliver_id="urn:publicid:IDN+starlight.vts.bsswks.net+sliver+204c8
 <geni:services>
 <geni:login authentication="ssh-keys" hostname="starlight.vts.bsswks.net" \
 port="33514" username="root"/>
 </geni:services>
 <vts:port client_id="host2:0" mac-address="c6:40:de:da:e7:28" \
 remote-clientid="bridge1:1" type="internal"/>
 </vts:container>

A discussion on what the expected behavior would be on the network is also included,
particularly emphasizing:

		VLANs:
* L2 tag/id to scope whether to forward a frame based on dst MAC (if within
VLAN, yes, if VLAN does not exist/configured, drop)
* L2 broadcast domains constructed in a logical manner independent of the
physical infrastructure of bridges:
* separate bridges into pieces of islands
* connect bridges in different broadcast domains with VLAN ids

		Subnets:
* L3 address based separation of networks
* Always scoped with VLANs
* L3 broadcast domain where matching happens at the host level using the
subnet mask:

		VLANs/L2 dictates who should RECEIVE a frame

		Subnets enforce who should READ the frame

Advancing over the skills in command line, student configured IP addresses on their hosts to
create subnets within VLANs. A test of reachability between hosts is conducted.

A flow chart on how ping reachability test progresses through the protocols that are taught
in this class will be presented next time. The lab6 has been to provide a general observation
on what happens within a subnet and outside. More in-depth discussion will help put the
observations into perspective within the behavior of the protocols.

ssh through putty is still a challenge. A network error happened with some students and
putty application does not display all innerworkings of the error for us to debug
and fix. And, it is a very different path from MAC users to work with tmux on windows
case. We had to install tmux on GENI hosts to be able to run on our terminal emulations. We
decided to try out compnet VM terminal screen to accomplish ssh function into GENI
hosts and run tmux on the compnet VM as well.

Most students did not report having observed the ARP entries populated at hosts when
running ping. Therefore, this lab will be repeated for these observations in the next lab.

Lab7

Objective: Completion of experiments with ping to observe L3 connectivity within
subnets and how vlans isolate in L2 and subnets isolate in L3.

[image: ../_images/vlansubnetTopology.png]
Skills Required for Activities:

Learning Outcomes:

Assessment of Learning Outcomes:

Teaching Journal:
Most concepts would have been better explained with the data packet as the main entity
to be analyzed hop to hop. What happens to a packet ingressing on portX when it is
egressing on porty? VLANs, routing, and transparent bridges should be explained with
this description.

Lab8

Objective:

Skills Required for Activities:

Learning Outcomes:

Assessment of Learning Outcomes:

Teaching Journal:

Lab9

Objective:

Skills Required for Activities:

Learning Outcomes:

Assessment of Learning Outcomes:

Teaching Journal:

Lab10

Objective:

Skills Required for Activities:

Learning Outcomes:

Assessment of Learning Outcomes:

Teaching Journal:

Lab11

Objective:

Skills Required for Activities:

Learning Outcomes:

Assessment of Learning Outcomes:

Teaching Journal:

Lab12

Objective:

Skills Required for Activities:

Learning Outcomes:

Assessment of Learning Outcomes:

Teaching Journal:

Lab13

Objective:

Skills Required for Activities:

Learning Outcomes:

Assessment of Learning Outcomes:

Teaching Journal:

Lab14

Objective:

Skills Required for Activities:

Learning Outcomes:

Assessment of Learning Outcomes:

Teaching Journal:

Lab15

Objective:

Skills Required for Activities:

Learning Outcomes:

Assessment of Learning Outcomes:

Teaching Journal:

Lab16

Objective:

Skills Required for Activities:

Learning Outcomes:

Assessment of Learning Outcomes:

Teaching Journal:

References:

[1] Stockman, Mark. “Creating remotely accessible virtual networks on a
single PC to teach computer networking and operating systems.” In
Proceedings of the 4th conference on Information technology curriculum,
pp. 67-71. ACM, 2003.

[2] http://assert.uaf.edu/papers/labEnvironments_HICSS09.pdf

[3] http://assert.uaf.edu/papers/evolutionOfASSERT_CISSE06.pdf

[4] http://assert.uaf.edu/papers/vmIntrospection_ieeesp08.pdf

 © Copyright 2015, Deniz Gurkan and Nicholas Bastin, University of Houston.
 Created using Sphinx 1.3.5.

_images/vtsNig.png
Ink = PG.Link()
Ink.addinterface(ntf1)
Ink.connectSharedVianicircui)
poraddResource(nk)

intf1 = serveraddinterface("f0") &z a5

ntf2 = client addinterface("i0")

Server = IGXXenVM("server’)

GENI VTS topology

tutorials/ssh-genilib.html

 Navigation

 		
 index

 		Computer Networking 0.1 documentation »

ssh and geni-lib

Lab1 - Basic Lab Environment Setup

Objective: Prepare host environment, user credential settings, portal setup,
and the lab’s virtual machine that hosts geni-lib.

Skills Required for Activities: Basic Linux command line interface with
simple editing, copying of files, creating keys for ssh, moving files,
creating directories. Understanding of the virtualization environment with a
hypervisor application (e.g., VMware workstation, VMware fusion, VirtualBox, etc.)
helping run a virtual machine in user hosts (student’s computers, Windows or MAC).

[image: ../_images/key_SSH1.png]
The private and public key pair is used to setup a lock and a key to access our
hosts (resources) on GENI and other such environments. The virtual machine (VM)
to be used in this lab will also be accessed through such a key pair. Therefore, a
public key is placed within the VM while the private key on student’s home
devices (windows and mac laptops or the lab desktops) will be used to access the
VM on the host or on GENI testbed.

[image: ../_images/key_SSH2.png]
The private key that matches the public key is the only key that can open the
door - therefore, giving access to the user on the VM.

[image: ../_images/geniand4421lab.png]
The testbed view over the network is a scaled-up version of the individual systems
in the 4421 labs. A host computer (student laptop or lab desktop) has a hypervisor
enabling the hosting of a VM. Similarly, GENI infrastructure is composed of such
virtualization architectures to offer such access and resource usage.

Learning Outcomes:

		Basic linux environment, command line familiarity,
copying files between VM and host, a personal cheat sheet creation for
the class.

		First knowledge and experience with public/private key pair
generation and pure key-based access to virtual machines.

		First time installation of a hypervisor into systems as well as
lab computers along with importing of a virtual machine (VM) provided
as part of the labs.

Assessment of Learning Outcomes: Students will be able to create a file
in their host machines and copy this file into their virtual machines. And
then, students will ssh into their VM, create a new directory in their VM,
move the file from their host into this directory while in the lab. A new
key pair can be generated to illustrate how key exchange works.

ssh process can be generalized into its use to access systems through key
management. Any application may utilize public/private keys to enable user
access.

[image: ../_images/sshProcesses.png]
Examples of such key exchange illustrate the usage of the key to provide access
to users in different systems.

[image: ../_images/sshUseEx.png]
Teaching Journal: The system differences between Windows and MAC Operating
Systems along with the Linux-based OSes pose a steep learning
curve challenge in the labs. While students are able to help each other,
windows users are not able to utilize the easy terminal access that Mac users
have. And, on the other hand, Mac users are not able to adapt to the terminal
command line since their expectation has always been the drag-and-drop user
interface with strict mouse-oriented interaction. A one-on-one interaction and
training is necessary during this first lab to get everybody setup with the
correct configurations. However, a do-it-at-home-by-yourself-a-few-times may
need to be assigned going forward to remove any discrepancies in the setup process.

Lab2 - GENI Interface with Python Library, geni-lib

geni-lib: http://geni-lib.readthedocs.org

Objective: Learn and observe how geni-lib Python interpreter command line
works. More information on geni-lib is at documentation and source code site [http://geni-lib.readthedocs.org]. Retrieve advertisement from the GENI federation
to investigate what resources may be available. Solidify the understanding of
virtualization technologies, key-based user access, and linux basics on file
transfer between virtual machines and host systems.

[image: ../_images/sshonGENI.png]
Skills Required for Activities: Interact with a Python interactive interpreter
command line to issue script commands. Utilize command line and Python object
directory search, entry, and help to navigate the geni-lib library. Further
deepen the understanding and skills on Linux, virtualization, and the lab
environment.

Learning Outcomes:

		Students will be able to interact with Linux command line interface (CLI)
to accomplish changing directories, copying files, checking what files are
where, and creating their SSH keys.

		Students will be able to create an automated environment for their SSH
sessions with future GENI hosts and their current computer networking
virtual machine (VM). For windows users, create and save an ssh and a
winscp session for the lab VM using their private key and user name. For
MAC users, create a .ssh/config file with ssh login info using their
private key and login name.

		Continue on with geni-lib experimentation to familiarize with the python
interpreter and the GENI federation.

		Students will be able to setup their geni-lib environment with their own
context using the context-from-bundle utility.

Assessment of Learning Outcomes: A demonstration that student’s genish
session runs as expected with a relevant reply from the federation resources when the
student requests an advertisement from an aggregate manager. Instructor
and the teaching assistant observed whether such an advertisement was retrieved by
the student on his/her VM at the end of the lab session.

Teaching Journal: Students had a difficult time following what an error
message may say. There is a lack of trust in their ability to read instructions
on the screen and then figure out what may be missing in their system and setup.
This is mostly due to them lacking Linux CLI skills. By going through many samples from
station to station we have tried to emphasize the reading of the error messages.

The students were still struggling with the SSH connectivity issues due
to the formatting differences between public keys generated at Windows OS
and Mac. Most of the time, public key was not matching the private key
although they were generated correctly. PUTTYGEN key pair generation has some
incompatibility with the Linux and Mac cases. geni-lib is being patched to
catch such error cases and either raise a knowledgable exception or correct the
errors from such incompatibilities through internal means (e.g., remove the
extra “n”, etc.).

The relationships between all software systems and the key
generation process is included here:

[image: ../_images/context_bundle.png]

 © Copyright 2015, Deniz Gurkan and Nicholas Bastin, University of Houston.
 Created using Sphinx 1.3.5.

_images/subnetRouting.png

_static/comment-close.png

_static/comment.png

_static/ajax-loader.gif

_images/pingObservations.png
NG

1GMP Echo Fequest

oes host have 3
rauts o X7

yes

Doss raute nave 3
oatoway?

no
yes
nexe_nop._ nexe_nop_tp = ga

next_nop_1p
AP tabie?

1GMP Echo Fequest

a1_ase = HAC (nexc_nop_tpl

‘sona Packet

no——,

Make ARP roquest

ot Responso?

_static/down.png

project/ospf_plus.html

 Navigation

 		
 index

 		Computer Networking 0.1 documentation »

OSPF+

Investigate protocol behavior during topology updates:

		Insert and delete subnets on interfaces: examine updates on routing tables

		Multipath setup between two end points: examine per packet vs per flow load balancing

		Cost changes: examine updates on paths

		Create multiple areas: examine protocol behavior beyond the simple one area version

 © Copyright 2015, Deniz Gurkan and Nicholas Bastin, University of Houston.
 Created using Sphinx 1.3.5.

_static/plus.png

tutorials/router.html

 Navigation

 		
 index

 		Computer Networking 0.1 documentation »

QUAGGA Router with OSPF

Lab9 - Observations on the OSPF Routing Protocol

Objective: Setup, configure, and instantiate a quagga router to run OSPF on a topology
of 3 routers. Investigate and observe how OSPF protocol behaves while exchanging link
state messages and forming the topology graph at each router node. Investigate how
updates are propagated in the network.

Skills Required for Activities:
The topology for the lab became complicated:

[image: ../_images/ospf3routers.png]
Skills for the lab expanded into using fabric python tool to remote ssh
into devices and configure them in small tasks with more automation during the
execution of the lab.

		Understanding of linux command line

		Knowledge and skill in using a new python package, fabric

		Knowledge of how IP addresses and route information is setup on hosts and on a quagga
router

		Understanding of two command line interfaces in the instantiated routers: one for the
quagga router and another for its hosting linux shell

		Knowledge of how to interact with the command line of quagga router

		Understanding of tools such as traceroute to observe the path of packets within
the topology

		Understanding of the routing protocol basics such as link state exchange messages,
routing table view, forwarding database view, and how router-to-router links are
setup with IP addresses

Learning Outcomes:

This lab is where all of the knowledge from previous labs has been utilized while learning
about how routers run a routing algorithm and its associated protocol. It has lasted two
weeks of execution time. During the first week’s lab session, a configuration and general
connectivity studies and examinations are conducted. During the second week’s session, a
more in-depth investigation is conducted on how OSPF works. In this respect, the learning
outcomes are:

		Familiarity with the command line interface of a quagga router to configure OSPF
and IP addresses for router-to-router interfaces.

		Learning through observation of the link state exchange mechanisms of quagga routers
with the OSPF protocol.

		Learning experiences of how to configure routers through a python tool, fabric.

		Observation of how link state protocol recovers topology information when any interface
of any of the routers may go down.

		Usage and familiarity with the tools such as the traceroute on routers to observe
the path of packets within the topology.

		Basic one area setup and configuration experience of OSPF on a minimal viable
topology composed of 3 routers.

		Experience and knowledge of interacting with the router command line and linux command
line interfaces to conduct relevant investigations on the topology and path recovery.

Assessment of Learning Outcomes:

Following on the free-form reporting of observations and learning outcomes from lab
exercises, a process flow diagram has been provided to the students to report on their
observations on decision points and routing protocol specific behavior points.
First observation point is on how to verify that there is a route established at a
router to a subnet that is not directly connected:

[image: ../_images/lab9observations1.png]
The second observation point is on how to observe the way each subnet establishes the
default gateway router and hence routers may keep an ARP entry for the directly connected
interfaces and hosts:

[image: ../_images/lab9observations2.png]
The first two observation points are assumed to be possible to examine during the first
half of the two lab sessions. However, it was not required to do so. Only the setup and
configuration of the complete topology has been required for the first half. The last
observation was on the behavior of the OSPF protocol during a link down: how a path may
change from one (in the figure red path is 2 to 1) to another when an interface on a router
is down (in the figure, we shutdown interface of 2nd router connecting to 1, hence the
path becomes 2 to 3 to 1, marked by the green arrows).

[image: ../_images/lab9observations3.png]
Teaching Journal:

The router observations brought all learning experiences in the labs and lectures
together with the expectation that all prior skill development has been developed at a
high level of proficiency. Therefore, this lab has been the most rewarding to the students
who have been caught up while all the most confusing for those who did not follow on
with their knowledge and skill accumulation. In general, the teaching experiences in this
lab emphasized the importance of building a solid foundation on how protocols behave
in a pyramid of learning experiences starting from basic MAC learning, ARP, DHCP, and IP
and then building and expanding towards routing protocols as networks scale up and wide.

 © Copyright 2015, Deniz Gurkan and Nicholas Bastin, University of Houston.
 Created using Sphinx 1.3.5.

tutorials/routing.html

 Navigation

 		
 index

 		Computer Networking 0.1 documentation »

Static Routing

Lab8 - Basics of Routing

Objective: Setup a basic router with static route entries for two connected
subnets on two router interfaces and a router on a stick setup with two subnets on
one interface. This lab has been an introduction to how the
routing works rather than interfacing with a router process such as the OSPF.

Skills Required for Activities:
Familiarity with the linux command line in setting up IP addresses, default
gateway for hosts, and GENI reservation of the topology.

Reservation of two topologies were required. One topology with two interfaces on a
router device connecting two subnets:

[image: ../_images/subnetRouting.png]
And, a router on a stick topology with one interface on the router device:

[image: ../_images/routerOnStick.png]
Both VLAN and subnet isolation, as well as routing concepts came together in
this lab exercise. In this respect, all previous concepts are assumed to be known
so that routing observations can be built on acquired skills and knowledge from
the previous labs.

Learning Outcomes:
Familiarize with how default gateway is assigned on linux command line at the
hosts. Experience how a router is setup with static route assignments on a regular
host. A process flow chart has been provided but expected to have a more impact during
the next lab when configuration of hosts and routers will not take most of the
lab time slot. The process flow chart illustrates how a routing device would process
an incoming packet on any of its ports.

[image: ../_images/routerProcessFlow.png]
Assessment of Learning Outcomes:
A basic topology and configuration for a static routing setup was expected at
the end of this lab. And, the verification of the setup has been achieved
using ping between the hosts on different subnets connected through a router.

Teaching Journal:
Students were able to have their topologies instantiated with no problem. However,
the configurations were overwhelming due to too many commands. We decided to
introduce python fabric module to achieve the configurations in a more
streamlined manner during the next lab.

The skills required in this lab were multi-dimensional. Linux command line, networking
protocols, a new process flow chart, and routing function in general are all expected
to come together as a whole. In order to help run this lab with a better systematic
method, ping process should be covered and concepts regarding what it means to
have a route should be solidified.

 © Copyright 2015, Deniz Gurkan and Nicholas Bastin, University of Houston.
 Created using Sphinx 1.3.5.

tutorials/vlans.html

 Navigation

 		
 index

 		Computer Networking 0.1 documentation »

VLANS

Lab5 - VLAN-based Scoping of the L2 Broadcast Domain

Objective: Observe and investigate how L2 Ethernet bridges “scope” their
forwarding behavior with VLANs. Learn how end hosts are included in a broadcast
domain through port-based VLANs on a L2 Ethernet bridge. In essence, develop
an observation-based understanding of L2 Ethernet broadcast domains using VLANs.

The topology for the lab is composed of 5 hosts with two port-based VLANs, 150
and 250, where there are two hosts per VLAN. An additional host, host5, is
connected to the L2 Ethernet bridge port with no VLAN assignment:

[image: ../_images/vlantopology.png]
Skills Required for Activities:

		Knowledge and understanding of how VLANs help scope L2 broadcast domains
using an L2 Ethernet bridge with port-based VLAN assignments. Visualization
and expectation of the outcomes from an experimental setup with a given
topology of end points, VLAN assignments, and an L2 Ethernet bridge.

		Basic understanding and reading capability of Ethernet frames with VLAN
tags and otherwise on the command line output of tcpdump.

		Advance the skills in interacting with GENI by deleting previously reserved
resources using the deletesliver call to the aggregate managers.

		Visualize the topology being reserved using the .dot file created by
the utility in geni-lib.

Learning Outcomes:

		Students will observe how port-based VLANs separate broadcast domains within
one L2 Ethernet bridge by starting with an empty forwarding table at the bridge. The
experiment will evolve with observations of how the bridge floods only within the
VLAN.

		Students will observe and learn how a VLAN separated bridge treats a port that
is not assigned to a VLAN. The trunk port is observed by running tcpdump
on a host connected to such a port.

Assessment of Learning Outcomes:

		A quiz is conducted (open notes, laptops, internet) on how VLAN isolation
works in a L2 Ethernet bridge with VLANs assigned to some ports and no VLANs
on one port on the switch. This is conducted during class 3 days after the
lab has been conducted.

[image: tutorials/pictures/quiz-vlanBcastDomain.png]

		A submission text file is required for this lab with pre-defined fields:
		Testing VLANs:
		host1 and host2 are on the same L2 broadcast domain

		host3, and host4 are in the same L2 broadcast domain

		if host1 sends a VLAN150 frame to host2, bridge1 should flood within VLAN150 (hosts 3 and 4 will not receive this frame)

		host5 listens using tcpdump seeing all tagged frames – trunk port

		Testing subnets:
		host1 and host2 are in the same L3 broadcast domain

		host3 and host4 are in the same L3 broadcast domain

		Make your reservation for today’s topology and submit:
		text of your manifest

		MAC addresses of all of your hosts

		IP address setup of all of your hosts

		frame and packet preparation scapy commands

		trunk port vlan-tagged frames at tcpdump

		receipt of frames only from within VLAN at hosts

		ARP entries for all hosts

Teaching Journal:
Conducted a quiz on self learning of bridges. Learning assessment of lab5 includes
the resulting performance from this quiz.

Emphasize trunk port showing tagged frames

Emphasize how broadcast domains have been partitioned in the topology through
port-based VLAN assignments within the bridge using a picture:

[image: ../_images/vlanPorts.png]
The setup instructions for this bridge configuration involved assigning the
VLAN id’s 150 and 250 to specific ports and not VLAN to the port
where host5 is connected to:

VTS.connectInternalCircuit((d1, 150), c1)
VTS.connectInternalCircuit((d1, 150), c2)
VTS.connectInternalCircuit((d1, 250), c3)
VTS.connectInternalCircuit((d1, 250), c4)
VTS.connectInternalCircuit(d1, c5)

Need to modify figures to remove VLAN id’s inside host references and put
subnet-specific information instead. Subnets and VLANs being introduced together
caused some confusion. The lab content was trying to catch up with the lectures.

Showed how to submit the observations of the experiment using a text file
and indicate what needs to be submitted towards the end of the lab. This was a
request from the students so they can have more structured instructions on what
to submit.
The fields that are required in the text file are determined and announced
to the class during the last 1 hour of the lab session of 3 hours. This is
delayed on purpose so that students will spend time examining what they
are observing, TA and instructor have a chance to walk around and discuss
the results, and also have the time to present running of the experiment
at the instructor’s projected session on board.

A sample text file has been prepared while the lab is in session while the instructor
ran the same experiment and made the observations required in the lab:

###################################
MAC Addresses of hosts:
host1 MAC e2:23:7b:67:23:30
host2 MAC 32:22:83:b5:2d:a9
host3 MAC 0a:96:75:dc:3c:13
host4 MAC 96:2c:43:c3:39:c5
host5 MAC 36:51:70:96:b4:1b

###################################
host1 to host2
frame = Ether(src = "e2:23:7b:67:23:30", dst = "32:22:83:b5:2d:a9")
sendp(frame, iface = "eth1")

###################################
host2 to host1
frame = Ether(dst = "e2:23:7b:67:23:30", src = "32:22:83:b5:2d:a9")
sendp(frame, iface = "eth1")

###################################
on host2:
listening on eth1, link-type EN10MB (Ethernet), capture size 65535 bytes
16:56:29.715007 e2:23:7b:67:23:30 (oui Unknown) > 32:22:83:b5:2d:a9 (oui Unknown), \
802.3, length 14: [|llc]
16:58:05.334663 32:22:83:b5:2d:a9 (oui Unknown) > e2:23:7b:67:23:30 (oui Unknown), \
802.3, length 14: [|llc]

###################################
on host1:
listening on eth1, link-type EN10MB (Ethernet), capture size 65535 bytes
16:56:29.714704 e2:23:7b:67:23:30 (oui Unknown) > 32:22:83:b5:2d:a9 (oui Unknown), \
802.3, length 14: [|llc]
16:58:05.335024 32:22:83:b5:2d:a9 (oui Unknown) > e2:23:7b:67:23:30 (oui Unknown), \
802.3, length 14: [|llc]

###################################
on host5:
listening on eth1, link-type EN10MB (Ethernet), capture size 65535 bytes
16:56:29.715010 e2:23:7b:67:23:30 (oui Unknown) > 32:22:83:b5:2d:a9 (oui Unknown), \
ethertype 802.1Q (0x8100), length 18: vlan 150, p 0, [|llc]

>>> PP(VTSAM.StarLight.dumpMACs(context,"testSW",["bridge1"]))
{'bridge1': [['port', 'VLAN', 'MAC', 'Age'],
 ['1', '150', 'e2:23:7b:67:23:30', '10'],
 ['2', '150', '32:22:83:b5:2d:a9', '7']]}

###################################
host3 to host4
frame = Ether(dst = "96:2c:43:c3:39:c5", src = "0a:96:75:dc:3c:13")
sendp(frame, iface = "eth1")

###################################
host4 to host3
frame = Ether(src = "96:2c:43:c3:39:c5", dst = "0a:96:75:dc:3c:13")
sendp(frame, iface = "eth1")

###################################
on host3:
listening on eth1, link-type EN10MB (Ethernet), capture size 65535 bytes
17:11:18.610655 0a:96:75:dc:3c:13 (oui Unknown) > 96:2c:43:c3:39:c5 (oui Unknown), \
802.3, length 14: [|llc]
17:11:47.010922 96:2c:43:c3:39:c5 (oui Unknown) > 0a:96:75:dc:3c:13 (oui Unknown), \
802.3, length 14: [|llc]

###################################
on host4:
listening on eth1, link-type EN10MB (Ethernet), capture size 65535 bytes
17:11:18.610976 0a:96:75:dc:3c:13 (oui Unknown) > 96:2c:43:c3:39:c5 (oui Unknown), \
802.3, length 14: [|llc]
17:11:47.010629 96:2c:43:c3:39:c5 (oui Unknown) > 0a:96:75:dc:3c:13 (oui Unknown), \
802.3, length 14: [|llc]

###################################
on host5:
listening on eth1, link-type EN10MB (Ethernet), capture size 65535 bytes
16:56:29.715010 e2:23:7b:67:23:30 (oui Unknown) > 32:22:83:b5:2d:a9 (oui Unknown), \
ethertype 802.1Q (0x8100), length 18: vlan 150, p 0, [|llc]
17:11:18.610983 0a:96:75:dc:3c:13 (oui Unknown) > 96:2c:43:c3:39:c5 (oui Unknown), \
ethertype 802.1Q (0x8100), length 18: vlan 250, p 0, [|llc]

###################################
MAC table on bridge:
>>> PP(VTSAM.StarLight.dumpMACs(context,"testSW",["bridge1"]))
{'bridge1': [['port', 'VLAN', 'MAC', 'Age'],
 ['3', '250', '0a:96:75:dc:3c:13', '89'],
 ['4', '250', '96:2c:43:c3:39:c5', '60']]}

###################################
host1 to host4
frame = Ether(src = "e2:23:7b:67:23:30", dst = "96:2c:43:c3:39:c5")
sendp(frame, iface = "eth1")

###################################
on host1:
listening on eth1, link-type EN10MB (Ethernet), capture size 65535 bytes
16:56:29.714704 e2:23:7b:67:23:30 (oui Unknown) > 32:22:83:b5:2d:a9 (oui Unknown), \
802.3, length 14: [|llc]
16:58:05.335024 32:22:83:b5:2d:a9 (oui Unknown) > e2:23:7b:67:23:30 (oui Unknown), \
802.3, length 14: [|llc]
17:01:33.774610 e2:23:7b:67:23:30 (oui Unknown) > 32:22:83:b5:2d:a9 (oui Unknown), \
802.3, length 14: [|llc]
17:01:36.942997 32:22:83:b5:2d:a9 (oui Unknown) > e2:23:7b:67:23:30 (oui Unknown), \
802.3, length 14: [|llc]
17:39:03.486613 e2:23:7b:67:23:30 (oui Unknown) > 96:2c:43:c3:39:c5 (oui Unknown), \
802.3, length 14: [|llc]

###################################
on host4:
listening on eth1, link-type EN10MB (Ethernet), capture size 65535 bytes
17:11:18.610976 0a:96:75:dc:3c:13 (oui Unknown) > 96:2c:43:c3:39:c5 (oui Unknown), \
802.3, length 14: [|llc]
17:11:47.010629 96:2c:43:c3:39:c5 (oui Unknown) > 0a:96:75:dc:3c:13 (oui Unknown), \
802.3, length 14: [|llc]

###################################
on host2:
listening on eth1, link-type EN10MB (Ethernet), capture size 65535 bytes
16:56:29.715007 e2:23:7b:67:23:30 (oui Unknown) > 32:22:83:b5:2d:a9 (oui Unknown), \
802.3, length 14: [|llc]
16:58:05.334663 32:22:83:b5:2d:a9 (oui Unknown) > e2:23:7b:67:23:30 (oui Unknown), \
802.3, length 14: [|llc]
17:01:33.774931 e2:23:7b:67:23:30 (oui Unknown) > 32:22:83:b5:2d:a9 (oui Unknown), \
802.3, length 14: [|llc]
17:01:36.942593 32:22:83:b5:2d:a9 (oui Unknown) > e2:23:7b:67:23:30 (oui Unknown), \
802.3, length 14: [|llc]
17:39:03.486983 e2:23:7b:67:23:30 (oui Unknown) > 96:2c:43:c3:39:c5 (oui Unknown), \
802.3, length 14: [|llc]

###################################
on host5:
listening on eth1, link-type EN10MB (Ethernet), capture size 65535 bytes
16:56:29.715010 e2:23:7b:67:23:30 (oui Unknown) > 32:22:83:b5:2d:a9 (oui Unknown), \
ethertype 802.1Q (0x8100), length 18: vlan 150, p 0, [|llc]
17:11:18.610983 0a:96:75:dc:3c:13 (oui Unknown) > 96:2c:43:c3:39:c5 (oui Unknown), \
ethertype 802.1Q (0x8100), length 18: vlan 250, p 0, [|llc]
17:39:03.486991 e2:23:7b:67:23:30 (oui Unknown) > 96:2c:43:c3:39:c5 (oui Unknown), \
ethertype 802.1Q (0x8100), length 18: vlan 150, p 0, [|llc]

###################################
MAC table at the bridge:
>>> PP(VTSAM.StarLight.dumpMACs(context,"testSW",["bridge1"]))
{'bridge1': [['port', 'VLAN', 'MAC', 'Age'],
 ['1', '150', 'e2:23:7b:67:23:30', '109']]}

In order to enhance the understanding of observations and also guide the students
on what behavior to expect from the VLAN isolation achieved in the topology, we
provided them with a process flow chart. In the following labs, we expected
this chart to be a guide for learning experiences.

[image: ../_images/vlansProcessFlow.png]

 © Copyright 2015, Deniz Gurkan and Nicholas Bastin, University of Houston.
 Created using Sphinx 1.3.5.

tutorials/index.html

 Navigation

 		
 index

 		Computer Networking 0.1 documentation »

Tutorials

		ssh and geni-lib
		Lab1 - Basic Lab Environment Setup

		Lab2 - GENI Interface with Python Library, geni-lib

		Transparent Bridge
		Lab3 and Lab4 - MAC Learning at a Transparent Bridge

		Lab4 - Part 2 of MAC Learning Observations

		VLANS
		Lab5 - VLAN-based Scoping of the L2 Broadcast Domain

		SUBNETTING
		Lab6 - IP Subnetting

		Lab7 - Use PING to Observe Reachability within Subnets

		Static Routing
		Lab8 - Basics of Routing

		QUAGGA Router with OSPF
		Lab9 - Observations on the OSPF Routing Protocol

 © Copyright 2015, Deniz Gurkan and Nicholas Bastin, University of Houston.
 Created using Sphinx 1.3.5.

tutorials/subnets.html

 Navigation

 		
 index

 		Computer Networking 0.1 documentation »

SUBNETTING

Lab6 - IP Subnetting

Objective: Observation of L3 broadcast domains using subnets. Subnets
can segregate networks at layer 3 through IP addressing. Also, students will be tested
on their ability to instantiate a topology on GENI without readily available scripts.

Skills Required for Activities:

		Knowledge and understanding of how IP addressing works and how to assign
subnets to create L3 broadcast domains.

		Understanding of the difference between L3 IP and L2 Ethernet broadcast domains.

		Basic IP address configuration commands in linux.

		Basic IP route table retrieval commands in linux.

		Usage of ping to test connectivity between hosts at L3.

		Basic understanding of how to create a request for specific network
topology and connections for hosts on the GENI testbed.

Learning Outcomes:

		Students will experience setting up a topology on their own to create a L2 Ethernet
bridge experiment with one bridge and 2 hosts.

		Students will learn how to set an IP address of a host through command line.

		Students will learn how to test L3 reachability using ping tool for echo request
within subnets and outside of subnets.

		Students will observe how L3 reachability effects the communication between hosts
through tcpdump and echo response packets generated by ping.

Assessment of Learning Outcomes:
An assessment of the knowledge in creation of a simple bridge topology has been
conducted. Given a time limit, how many students can reserve a topology, enter login
information into their preferred way of ssh application, and run an experiment of
MAC learning?
Students were asked to submit a text file with their experiment results:

		Script for the request

		Manifest of their reservation

		IP address setup commands on each host

		ip route sh result from each host

		The result of a ping from host1 to host5 and the result of a ping from host2
to host5 (or host1, still within the same VLAN but a different subnet).

Students were also given an assignment to create a request for a simple two host and
bridge topology:

		Delete any existing slivers on all your slices: display a proof that you do not have
any resources left on your slices by calling listresources on them

		Reserve a topology of two hosts and a bridge

		Prepare a text file where you copy and paste:
		MAC addresses of hosts

		scapy commands to be used to send frames from each host

		tcpdump from each host at EVERY send of a packet with scapy

		forwarding table of the bridge at every scapy message sent

The topology of the simple network and an empty forwarding table is included in quiz:

[image: ../_images/simpleTopologyAssignment.png]
Teaching Journal:
Anatomy of a request is described with details on the code in python interpreter:

put request object in r
r = VTS.Request()

I need a bridge of kind OVS, L2 image
d1 = r.Datapath(VTS.OVSL2Image(), "bridge1")

I need a host of kind uh:cn4421 image
c1 = r.Container(VTS.Image("uh:cn4421"), "host1")

connect hosts to bridge and bridges to each other, and use VLANs or not…
VTS.connectInternalCircuit((d1, 100), c1)
VTS.connectInternalCircuit(d1, c7)
VTS.connectInternalCircuit(d1, d2)

Figure out what is available and where through polling for an advertisement:

ad = VTSAM.StarLight.listresources(context)
>>> print ad.text
<rspec xmlns:vts="http://geni.bssoftworks.com/rspec/ext/vts/ad/1"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:geni="http://www.geni.net/resources/rspec/3"
xsi:schemaLocation="http://www.geni.net/resources/rspec/3
http://www.geni.net/resources/rspec/3/request.xsd" type="advertisement">
 <vts:circuit-planes/>
 <vts:images>
 <vts:image name="bss:ovs-202" type="raw"/>
 <vts:image name="uh:cn4421" type="container"/>
 </vts:images>
 <vts:datapaths/>
</rspec>

How to read a manifest returned from a request so we can login to our hosts
and verify the topology:

>>> print vManifest.text
<rspec xmlns:geni="http://www.geni.net/resources/rspec/3"
xmlns:sdn="http://geni.bssoftworks.com/rspec/ext/sdn/manifest/
 <vts:datapath client_id="bridge1" image="bss:ovs-201" \
sliver_id="urn:publicid:IDN+starlight.vts.bsswks.net+sliver+20
 <vts:port client_id="bridge1:3" remote-clientid="host4:0" \
 type="internal" vlan-id="100"/>
 <vts:port client_id="bridge1:2" remote-clientid="host3:0" \
 type="internal" vlan-id="200"/>
 <vts:port client_id="bridge1:1" remote-clientid="host2:0" \
 type="internal" vlan-id="100"/>
 <vts:port client_id="bridge1:0" remote-clientid="host1:0" \
 type="internal" vlan-id="100"/>
 <vts:port client_id="bridge1:5" remote-clientid="bridge2:0" type="internal"/>
 <vts:port client_id="bridge1:4" remote-clientid="host7:0" type="internal"/>
 </vts:datapath>
 <vts:datapath client_id="bridge2" image="bss:ovs-201" \
 sliver_id="urn:publicid:IDN+starlight.vts.bsswks.net+sliver+20
 <vts:port client_id="bridge2:0" remote-clientid="bridge1:5" type="internal"/>
 <vts:port client_id="bridge2:1" remote-clientid="host5:0" \
 type="internal" vlan-id="100"/>
 <vts:port client_id="bridge2:2" remote-clientid="host6:0" \
 type="internal" vlan-id="200"/>
 </vts:datapath>

 <vts:container client_id="host1" image="uh:cn4421"
 sliver_id="urn:publicid:IDN+starlight.vts.bsswks.net+sliver+204c8
 <geni:services>
 <geni:login authentication="ssh-keys" hostname="starlight.vts.bsswks.net" \
 port="33513" username="root"/>
 </geni:services>
 <vts:port client_id="host1:0" mac-address="72:91:76:1d:d0:9a" \
 remote-clientid="bridge1:0" type="internal"/>
 </vts:container>
 <vts:container client_id="host2" image="uh:cn4421" \
 sliver_id="urn:publicid:IDN+starlight.vts.bsswks.net+sliver+204c8
 <geni:services>
 <geni:login authentication="ssh-keys" hostname="starlight.vts.bsswks.net" \
 port="33514" username="root"/>
 </geni:services>
 <vts:port client_id="host2:0" mac-address="c6:40:de:da:e7:28" \
 remote-clientid="bridge1:1" type="internal"/>
 </vts:container>

A discussion on what the expected behavior would be on the network is also included,
particularly emphasizing:

		VLANs:
		L2 tag/id to scope whether to forward a frame based on dst MAC (if within
VLAN, yes, if VLAN does not exist/configured, drop)

		L2 broadcast domains constructed in a logical manner independent of the
physical infrastructure of bridges:
		separate bridges into pieces of islands

		connect bridges in different broadcast domains with VLAN ids

		Subnets:
		L3 address based separation of networks

		Always scoped with VLANs

		L3 broadcast domain where matching happens at the host level using the
subnet mask:
		VLANs/L2 dictates who should RECEIVE a frame

		Subnets enforce who should READ the frame

Advancing over the skills in command line, students configured IP addresses on
their hosts to create subnets within VLANs. A test of reachability between hosts
is conducted using the ping tool.

A flow chart on how ping reachability test progresses through the protocols
that are taught in this class will be presented next time. The lab6 has been to
provide a general observation on what happens within a subnet and outside. More
in-depth discussion will help put the observations into perspective within the
behavior of the protocols.

[image: ../_images/processPING.png]
ssh through putty is still a challenge. A network error happened with some
students and putty application does not display all innerworkings of the error
for us to debug and fix. And, it is a very different path for windows users to work
with tmux. We had to install tmux on GENI hosts to be able to run on our
terminal emulations. We decided to try out compnet VM terminal screen to
accomplish ssh function into GENI hosts and run tmux on the compnet VM
as well. Windows users wanted to switch to using only their compnet VM as
the ssh mechanism to all hosts and routers from this lab onwards. Both ssh
key generation process and the ssh itself became uniform in the labs from this point on.

Note

The windows
users have demanded such a change and were very much willing to edit their
~/.ssh/config file to get this accomplished. NEXT time teaching the course,
we will use just the compnet VM to access GENI nodes through ssh providing us a
uniform platform for all ssh access mechanisms.

Most students did not report having observed the ARP entries populated at hosts when
running ping. Therefore, this lab will be repeated for these observations
in the next lab. NEXT time this lab should be divided into two with lab6 addressing
only configuration of the nodes with subnet IP address settings. Provide more in-depth
discussion of how IP addressing is achieved with examples and assignments. In addition,
prepare a foundation for students to determine what subnet addressing they will pick
for their networks and how they will setup the addresses on a worksheet. The worksheet
may have a column for hosts, another for which VLAN each host is, and another column
for the students to fill in what subnet each host may be assigned to and their
corresponding IP address. Given these assignments, students may then create a
configuration sheet for the hosts with the commands provided in the lab for assigning
IP addresses to hosts.

Lab7 - Use PING to Observe Reachability within Subnets

Objective: Completion of experiments with ping to observe L3 connectivity
within subnets and how VLANs isolate traffic and connectivity in L2 and while subnets
isolate in L3.

[image: ../_images/vlansubnetTopology.png]
Skills Required for Activities:
Configuration of hosts with IP addresses so that they have the proper subnetting
setup. The configuration of subnets will be built during the previous lab.
The reservation script takes care of the expected VLAN assignments on the
bridge interfaces. Further skills on linux command line, what ping command means,
how to examine and validate IP address assignments, how to observe forwarding tables
at bridges, and tcpdump output, and how to recognize ARP packets while also
checking ARP entries at end hosts.

Learning Outcomes:
Observation of how VLAN and subnet isolation works at layer 2 and layer 3. Usage
of ping to check and verify layer 3 connectivity.

Assessment of Learning Outcomes:
Free form observation is encouraged by providing only a flow chart of expected
behavior. On the flow chart, students were asked to provide how the decision
points on the flow chart were observed and what events have happened regarding
isolation through VLANs and subnetting. A guideline of expected behavior and
exceptions was provided.

Testing VLANs:

		host3 and host6 are on the same L2 broadcast domain

		host1, host2, host5, and host4 are in the same L2 broadcast domain

		if host3 sends a VLAN200 frame to host5, bridge2 should flood within its broadcast
domain at ports 4 and to bridge2.

		host7 listens using tcpdump seeing all tagged frames

Testing subnets:

		host2 and host4 are in the same L3 broadcast domain

		host1 and host5 are in the same L3 broadcast domain

		all these hosts are in the same VLAN id = 100

		if host2 sends a frame to host5, what does the packet look like?

The observation points are indicated on the flow chart as shown in the figure.

[image: ../_images/pingObservations.png]

		ping message assigns the IP address being pinged to the nw_dst (destination
network address) and then examines the host IP information to determine what to
assign to the dl_dst (link layer destination MAC address). This step is purely
to assign a destination MAC address for the ping message

		Does host have a route to X?
		Check IP table at host using ip route show command

		Verify where each IP destination may be forwarded to by the host

		Does route have a gateway?
		If a route was found, examine whether there is a default gateway listed

		If a route was found, document and report what the route information is

		Based on the next hop IP address, examine whether there is already an ARP
entry for the IP address in the ARP table

		Once packet is sent out of the host, if there is a response from the destination,
the echo reply will be displayed at the host where ping was initiated. The test
for connectivity ends here and students should report on where they have observed
L3 connectivity.

Teaching Journal:
The practice to give the freedom to the students to submit their observations
in free form with some guideline on a process flow diagram was helpful. It was
flexible enough that students were able to concentrate on the learning experiences
while also definitive enough that there was enough guidance on what should be
observed in the lab. Grading of such submissions is still a challenge.
We relied on walking around the lab and having a one-on-one interaction
with the students while they observed network protocol behavior to get a grasp
of what has been learned. However, this does not scale well and the rubric
for such evaluations is not clear.

GENERAL THOUGHTS ON IMPROVING THE TEACHING FOR NEXT TIME:
Most concepts would have been better explained with the data packet as the main entity
to be analyzed hop to hop. What happens to a packet ingressing on portX when it is
egressing on portY? VLANs, routing, and transparent bridges should be explained with
this description.

 © Copyright 2015, Deniz Gurkan and Nicholas Bastin, University of Houston.
 Created using Sphinx 1.3.5.

project/commontools/testbed.html

 Navigation

 		
 index

 		Computer Networking 0.1 documentation »

Testbed Creation for Network Experiments

There are two phases to the reservation of a testbed for networking
experiments when attaching virtual machines to a given network
topology. We use the geni-lib python library to interact with the
GENI federation: docs for geni-lib are here [http://geni-lib.readthedocs.org].

I. Network Topology Reservation on GENI

The topology of bridges and routers will be created before VMs are attached. Therefore,
connectivity options should be determined with the desired VM connections.

[image: ../../_images/vtsam.png]
Once such a
topology graph is designed, a request can be made to the VTS aggregate managers, Illinois,
NPS, and UKYPKS2:

r = VTS.Request()
r1 = r.Container(VTS.Image("bss.quagga"), "rtr1")

d1 = r.Datapath(VTS.OVSL2Image(), "dp1")
d2 = r.Datapath(VTS.OVSL2Image(), "dp2")
two VMs may be utilized on each bridge
this is where two wires are created for VMs to connect to during VM reservation phase
d1.attachPort(VTS.PGCircuit())
d2.attachPort(VTS.PGCircuit())
each bridge then connects to the router
VTS.connectInternalCircuit(d1, r1)
VTS.connectInternalCircuit(d2, r1)

vtsr.writeXML("topology-request.xml")
vtsm = VTSAM.LOCATION.createsliver(context, SLICE, vtsr)
vtsm.writeXML("topology-manifest.xml")

Such a request will result in a manifest that lists the internal circuits between the
network devices shown in the topology graph above, as well as the circuits created
at the bridges for virtual machines (VMs) to attach to.

[image: ../../_images/vtsamVMcircuits.png]
The vtsm variable holds the topology manifest that has these circuits listed:

<rspec xmlns:geni="http://www.geni.net/resources/rspec/3" xmlns:sdn="http://geni.bssoftworks.com/ \
rspec/ext/sdn/manifest/1" xmlns:vts="http://geni.bssoftworks.co
 <vts:datapath client_id="dp0" image="bss:ovs-201" sliver_id="urn:publicid:IDN+nps.vts.bsswks.net+\
 sliver+ffcf4c2a-769d-411a-a896-f5d31b410b61">
 <vts:port client_id="dp0:2" remote-clientid="r0:0" type="internal"/>
 <vts:port client_id="dp0:1" shared-lan="vts-1041" type="pg-local"/>
 <vts:port client_id="dp0:0" shared-lan="vts-1040" type="pg-local"/>
 </vts:datapath>
 <vts:datapath client_id="dp1" image="bss:ovs-201" sliver_id="urn:publicid:IDN+nps.vts.bsswks.net+\
 sliver+ffcf4c2a-769d-411a-a896-f5d31b410b61">
 <vts:port client_id="dp1:2" remote-clientid="r0:1" type="internal"/>
 <vts:port client_id="dp1:0" shared-lan="vts-1046" type="pg-local"/>
 <vts:port client_id="dp1:1" shared-lan="vts-1047" type="pg-local"/>
 </vts:datapath>
 <vts:functions/>
 <vts:container client_id="r0" image="nf.base" sliver_id="urn:publicid:IDN+nps.vts.bsswks.net+sliver+\
 ffcf4c2a-769d-411a-a896-f5d31b410b61">
 <geni:services>
 <geni:login authentication="ssh-keys" hostname="nps.vts.bsswks.net" port="22" \
 username="t8r2yx0e8d6"/>
 </geni:services>
 <vts:port client_id="r0:0" mac-address="02:07:2a:66:0b:18" remote-clientid="dp0:2" \
 type="internal"/>
 <vts:port client_id="r0:1" mac-address="fe:e6:18:6d:ef:3b" remote-clientid="dp1:2" \
 type="internal"/>
 </vts:container>
</rspec>

II. VM Reservation on GENI

Simple one VM reservation can be accomplished using the following
script on geni-lib (docs for geni-lib are here [http://geni-lib.readthedocs.org]).

		Determine what InstaGENI Aggregate Manager (IGAM) to use: e.g., Illinois,
NPS, UKYPKS2)

		Prepare the “wire” that would be used to connect this VM to the overall
network topology

The following code snippet achieves reservation of a VM with its associated
interface and an IP address on the interface:

This is a ProtoGENI request
pgr = PG.Request()

A VM is going to be added to the request
vm = IGX.XenVM("vm1")
Only if we need a public IP (which is rare in this lab)
vm.routable_control_ip = True
The VM has one interface
intf1 = vm.addInterface("if0")
IP address assignment for the VM (can be changed on the VM later)
intf1.addAddress(PG.IPv4Address("10.10.10.1", "255.255.255.0"))

Add VM into the request
pgr.addResource(vm)

III. Connecting VMs

If this VM will be connected to another VM using GENI’s underlying network,
we can create a Link and add the interfaces of the VMs on it. The Link
provides a L2 cloud for the VMs to reach each other:

A second VM is going to be added to the request
vm = IGX.XenVM("vm2")
The VM has one interface
intf2 = vm.addInterface("if0")
IP address assignment for the VM (can be changed on the VM later)
intf2.addAddress(PG.IPv4Address("10.10.10.2", "255.255.255.0"))

Add VM into the request
pgr.addResource(vm)

Create a link
lnk = PG.Link()

Add interfaces to the link
lnk.addInterface(intf1)
lnk.addInterface(intf2)

Add the link to the request
pgr.addResource(lnk)

pgr.writeXML("VM-request.xml")
igm = IGAM.LOCATION.createsliver(context, SLICE, pgr)
igm.writeXML("VM-manifest.xml")

util.printlogininfo(manifest=igm)

The request can be visualized using the figure below with the GENI L2 cloud in the
middle of these two VMs:

[image: ../../_images/computeTopology.png]

IV. Connecting VMs through a VTS Topology

The example above on providing a network between the two VMs using PG.Link()
provide only a L2 cloud with GENI networking providing a basic reachability between
the VMs. If we would like to connect our VMs to a network topology of our choice,
we could create a VTS topology as outlined during the tutorials of this page.
If the VMs need to be attached to the network topology created
through VTS, for example, with vtsm manifest from the first section above:

Create a protogeni request for VMs
pgr = PG.Request()

for all circuits inside the VTS manifest, attach a VM and call each vm1, vm2, ...
for idx,circuit in enumerate(vtsm.pg_circuits):
 vm = IGX.XenVM("vm%d" % (idx))
 intf = vm.addInterface("if0")
 pgr.addResource(vm)

 lnk = PG.Link()
 lnk.addInterface(intf)

 # connect interfaces to the circuit created by the VTS topology
 lnk.connectSharedVlan(circuit)
 pgr.addResource(lnk)

pgr.writeXML("VM-request.xml")
igm = IGAM.LOCATION.createsliver(context, SLICE, pgr)
igm.writeXML("VM-manifest.xml")

util.printlogininfo(manifest=igm)

Such a connection with VMs will complete the testbed for experimentation:

[image: ../../_images/vtsNig.png]
Login information for the VMs can be retrieved using the geni-lib utility call:

>>> util.printlogininfo(manifest=igm)
[dgurka01] pc3.instageni.nps.edu:30010 # vm0
[dgurka01] pc1.instageni.nps.edu:30010 # vm1
[dgurka01] pc2.instageni.nps.edu:30010 # vm2
[dgurka01] pc3.instageni.nps.edu:30011 # vm3

A given manifest from VTS and another from IGAM, namely igm and vtsm, we
can create a topology dotfile to draw the topology graph:

with open("sdntrace-topology.dot", "w+") as f:
 f.write(geni.util.builddot([vtsm, igm]))

 © Copyright 2015, Deniz Gurkan and Nicholas Bastin, University of Houston.
 Created using Sphinx 1.3.5.

ack.html

 Navigation

 		
 index

 		Computer Networking 0.1 documentation »

Acknowledgment

Acknowledgment: This work was partially funded by National Science
Foundation ACI grant award no. 1341019 and EAGER award no. 1449151.

Disclaimer: Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the author(s) and do not
necessarily reflect the views of the National Science Foundation.

 © Copyright 2015, Deniz Gurkan and Nicholas Bastin, University of Houston.
 Created using Sphinx 1.3.5.

project/commontools/projectmanagement.html

 Navigation

 		
 index

 		Computer Networking 0.1 documentation »

Project Management in Teams

 © Copyright 2015, Deniz Gurkan and Nicholas Bastin, University of Houston.
 Created using Sphinx 1.3.5.

project/index.html

 Navigation

 		
 index

 		Computer Networking 0.1 documentation »

Projects

		OSPF+

		HTTP

		TCP

		Common Tools for Projects
		DNS

		Bitbucket Version Management

		Testbed Creation for Network Experiments
		I. Network Topology Reservation on GENI

		II. VM Reservation on GENI

		III. Connecting VMs

		IV. Connecting VMs through a VTS Topology

		Project Management in Teams

 © Copyright 2015, Deniz Gurkan and Nicholas Bastin, University of Houston.
 Created using Sphinx 1.3.5.

project/tcp.html

 Navigation

 		
 index

 		Computer Networking 0.1 documentation »

TCP

Examine the way transport protocol handles packets as a controlled flow:

1. Perform TCP tuning on end hosts by changing window size: measure/determine
the (bandwidth x delay) product of the path and compare

		Parameters are various in tuning

b. Control the network attributes such as the delay and bandwidth to observe the
effect on TCP performance/tuning

2. Insert a NAT device: investigate how TCP sessions are handled to enable all flows
reaching their destination

 © Copyright 2015, Deniz Gurkan and Nicholas Bastin, University of Houston.
 Created using Sphinx 1.3.5.

updates.html

 Navigation

 		
 index

 		Computer Networking 0.1 documentation »

REFRESH OFTEN!

This page is updated very frequently.

Please refresh your browser to load revisions and new material.

 © Copyright 2015, Deniz Gurkan and Nicholas Bastin, University of Houston.
 Created using Sphinx 1.3.5.

_static/up-pressed.png

project/commontools/DNS.html

 Navigation

 		
 index

 		Computer Networking 0.1 documentation »

DNS

Host a DNS server within the topology and enter name to IP address mappings
for any servers in the network

How to install a DNS server [http://www.thegeekstuff.com/2014/01/install-dns-server/]

How DNS works [http://www.thegeekstuff.com/2013/12/dns-basics/]

How to configure a DNS server in a private network [https://www.digitalocean.com/community/tutorials/how-to-configure-bind-as-a-private-network-dns-server-on-ubuntu-14-04]

		Reserve a VM within the experiment topology

		Decide on IP addresses of subnets and what name/IP address pairs there will be

		SSH into the VM to set it up as a DNS server

		Configure the DNS server

		Configure all of the hosts within the topology so that they have the DNS server
in their network configuration (more information is here [https://www.digitalocean.com/community/tutorial_series/an-introduction-to-managing-dns])

		Test the DNS server using a simple DNS query mechanism

One sample topology in GENI may look like this:

[image: ../../_images/dnsTopology.png]
At the DNS server host, vm0:

sudo apt-get update
sudo apt-get install bind9

edit the /etc/bind/named.conf.options
acl "trusted" {
 10.10.1.1; # ns1 - is the localhost
 10.10.1.2; # a host within the same subnet with ns1
 10.10.0.2; # a host in neighbor subnet
 10.10.0.3; # another host in neighbor subnet
 };
options {
 directory "/var/cache/bind";

 recursion yes;
 allow-recursion { trusted; };
 listen-on { 10.10.1.1; };
 allow-transfer { none; };
 // If there is a firewall between you and nameservers you want
 // to talk to, you may need to fix the firewall to allow multiple
 // ports to talk. See http://www.kb.cert.org/vuls/id/800113

 // If your ISP provided one or more IP addresses for stable
 // nameservers, you probably want to use them as forwarders.
 // Uncomment the following block, and insert the addresses replacing
 // the all-0's placeholder.

 // forwarders {
 // 0.0.0.0;
 // };

 //==
 // If BIND logs error messages about the root key being expired,
 // you will need to update your keys. See https://www.isc.org/bind-keys
 //==
 dnssec-validation auto;

 auth-nxdomain no; # conform to RFC1035
 listen-on-v6 { any; };
 };

Also, edit the DNS setup and configuration files:

edit the /etc/default/bind9
run resolvconf?
RESOLVCONF=no

startup options for the server
OPTIONS="-4 -u bind"

Update the local configuration file for DNS setup, /etc/bind/named.conf.local:

//
// Do any local configuration here
//

// Consider adding the 1918 zones here, if they are not used in your
// organization
//include "/etc/bind/zones.rfc1918";

zone "0.0.127.in-addr.arpa" {
 type master;
 file "db.local";
 notify no;
 };

zone "cn4421.uh" {
 type master;
 file "/etc/bind/db.cn4421.uh";
 };

zone "10.10.in-addr.arpa" {
 type master;
 file "/etc/bind/db.10.10"; # 10.10.1/24 and 10.10.0/24 subnet
 };

Update the forward Resource Records (RR) zone file for DNS setup, /etc/bind/db.cn4421.uh:

;
$TTL 300
@ IN SOA ns1.cn4421.uh. hostmaster.cn4421.uh. (
 3 ; Serial
 604800 ; Refresh
 86400 ; Retry
 2419200 ; Expire
 604800) ; Negative Cache TTL
;
; name servers - NS records
 IN NS ns1.cn4421.uh.
;
; name servers - A records
ns1.cn4421.uh. IN A 10.10.1.1
;
; 10.10.0.0/24 - A records
vm2.cn4421.uh. IN A 10.10.0.2
vm3.cn4421.uh. IN A 10.10.0.3
; 10.10.1.0/24 - A records
vm0.cn4421.uh. IN A 10.10.1.1
vm1.cn4421.uh. IN A 10.10.1.2

Update the reverse RR zone file for DNS setup, /etc/bind/db.10.10:

;
; BIND reverse data file for zones
;
$TTL 300
$ORIGIN 10.10.in-addr.arpa.
@ IN SOA ns1.cn4421.uh. hostmaster.cn4421.uh. (
 3 ; Serial
 604800 ; Refresh
 86400 ; Retry
 2419200 ; Expire
 604800) ; Negative Cache TTL
; name server
@ IN NS ns1.cn4421.uh.

; PTR records
1.1 IN PTR vm0.cn4421.uh. ; 10.10.1.1 vm0 in subnet 10.10.1/24
2.1 IN PTR vm1.cn4421.uh. ; 10.10.1.2 vm1 in subnet 10.10.1/24
2.0 IN PTR vm2.cn4421.uh. ; 10.10.0.2 vm2 in subnet 10.10.0/24
3.0 IN PTR vm3.cn4421.uh. ; 10.10.0.3 vm3 in subnet 10.10.0/24

Verify that the files have correct format and entries:

dgurka01@vm0:/etc/bind$ sudo named-checkzone cn4421.uh db.cn4421.uh
zone cn4421.uh/IN: loaded serial 3
OK
dgurka01@vm0:/etc/bind$ sudo named-checkzone 10.10.in-addr.arpa db.10.10
zone 10.10.in-addr.arpa/IN: loaded serial 3
OK
dgurka01@vm0:/etc/bind$ sudo named-checkconf

Restart service:

dgurka01@vm0:/etc/bind$ sudo service bind9 restart
* Stopping domain name service... bind9 waiting for pid 2681 to die
 [OK]
* Starting domain name service... bind9 [OK]

Change hosts’ DNS server entries in their /etc/resolv.conf:

DELETE existing entries:
Domain instageni.bla.bla.edu
Search instageni.bla.bla.edu
Nameserver 224.etc.etc.etc

ENTER current DNS server:
search cn4421.uh
nameserver 10.10.1.1

If you do an nslookup:

dgurka01@vm0:~$ nslookup vm2
Server: 10.10.1.1
Address: 10.10.1.1#53

Name: vm2.cn4421.uh
Address: 10.10.0.2

 © Copyright 2015, Deniz Gurkan and Nicholas Bastin, University of Houston.
 Created using Sphinx 1.3.5.

tutorials/self-learning.html

 Navigation

 		
 index

 		Computer Networking 0.1 documentation »

Transparent Bridge

Lab3 and Lab4 - MAC Learning at a Transparent Bridge

Objective Part 1: Reserve a topology of 3 hosts and a transparent bridge
to observe self-learning at forwarding table updates while sending Ethernet frames
using scapy (python packet manipulation program) and investigating
received traffic using tcpdump at the hosts where flooded traffic arrives.

The progression of how a self-learning bridge may populate its forwarding
table as frames are transmitted by the hosts will be investigated and
observed in this lab. The illustration below is on how the forwarding table
is populated with MAC entries based on the incoming frame source MAC addresses.
Based on the learned MAC entries, students should expect to see no flooding
for frame destination MAC addresses that already exist in the forwarding table.

[image: ../_images/self-learning1.png]
[image: ../_images/self-learning2.png]
[image: ../_images/self-learning3.png]
[image: ../_images/self-learning4.png]
Skills Required for Activities:
Students are going to both send packets and observe flooding taking place. Therefore,
an appropriate environment needs to be setup with multiple terminal interfaces
and the mechanism to poll the forwarding table state of the transparent bridge.
The lab utilizes the tool that multiplexes terminals into one window, TMUX, to
achieve the observation environment. Therefore, students learn the
Linux commands to create a TMUX in a terminal in addition to basic understanding
of running tcpdump and scapy on each host terminal. Also, issuing
calls to methdos such as listresources and dumpMACs in geni-lib
shell to the aggregate manager at which the reservation resides.

More information on scapy: http://www.secdev.org/projects/scapy/
More information on tcpdump: http://www.tcpdump.org/
More information on tmux is here [http://www.openbsd.org/cgi-bin/man.cgi/OpenBSD-current/man1/tmux.1?query=tmux&sec=1].

Learning Outcomes:

		Basic understanding of what is observed at tcpdump output.

		Learn to generate simple Ethernet frames using scapy.

		Terminal manipulation techniques to build an advanced testing and
observation environment using tmux tool.

		Observation of MAC learning at a transparent bridge through basic Ethernet frames
sent by connected hosts.

Assessment of Learning Outcomes:

		Student will be able to reserve 3 hosts and a bridge connected in a
star topology.

		Student will be able to print their manifest on the genish python
interpreter to investigate the host login information.

		Student will be able to enter host login information into their work
environment automation: “config” file in all systems.

		Student will be able to login to their hosts on GENI environment with
their key pairs.

Teaching Journal:
Need to provide basic search, directory, and help mechanisms within python
interpreters. Basic knowledge on classes, calling objects, mechanisms for method
calls, investigating what arguments each method requires, and how to assign
values to variables and what type considerations there are in referring to such
variables (e.g., integer, string, etc.).

Need to provide an example work environment view for the students to replicate
in their machines: show all terminal screens with host login, genish terminal
that interacts with the geni and reservations, etc.

Need to go through SCAPY to show some basic packet generation principles.

Need to go through TCPDUMP to show how network packets are retrieved and
further displayed on the terminal.

Lab4 - Part 2 of MAC Learning Observations

Objective Part 2: Experiment with packet sending features of scapy and the
packet receipt/analysis interfaces of tcpdump while conducting
the rest of the lab. The main learning objective is to understand
how MAC learning at a transparent bridge works through
actively sending Ethernet frames and interactively observing the
updates on the forwarding table with frames reaching host(s) as flooded
or unicast.

Skills Required for Activities:

		Python interpreter interface to scapy and genish.

		Ability to examine the forwarding table of transparent bridge in the topology
and follow the updates as packets are sent by hosts.

		tcpdump command options and analysis of command line output.

		tmux (or similar tool) to make quick observations on which hosts may be
receiving what frames within a broadcast domain and outside.

Learning Outcomes:

The behavior of the learning bridge before and after a MAC of a
directly-attached host is summarized as:

		Before learning: bridge floods all other ports where it has not received
a frame from and verify that the flooding happens using the same incoming
frame

		At receipt of a frame: bridge enters the incoming port number with the source
MAC address of the frame as a destination MAC at this port in its forwarding
table

		After learning: new frames destined to the host with the matching MAC address
are directly forwarded to that port as listed entry in the forwarding table
with no flooding.

The lab provides tools to make the observations of the transparent bridge
behavior. Students are expected to follow instructions on tools and topology
creation to familiarize themselves with the experiment environment.

		Students will learn to navigate through advanced management of terminals
to observe tcpdump output while sending hand-crafted frames in scapy.

		Students will learn how to compose Ethernet frames and send them through
python interpreter interface of the libraries in scapy.

		Students will learn how a transparent layer 2 Ethernet bridge does
MAC learning of the attached hosts’ MAC addresses from source MAC addresses
of incoming frames, how forwarding of frames take place according to the
destination MAC addresses of frames, and how the bridge populates its
forwarding table accordingly.

		Students will observe and verify that bridges flood when learning and
once an entry is in place for an attached host, they will forward
directly to the corresponding port for the destination MAC address.

Assessment of Learning Outcomes:

		Student will be able to run a reservation script, login to reserved
hosts, run a simple traffic while also running tcpdump to observe
transmitted and received traffic on the end hosts.

		Students will understand the concept of MAC learning in a transparent bridge both
through basic observation of the protocol in action and within an example
use case that they will walk through how the protocol may work. A screenshot
of their observations will be submitted.

		A quiz is given on self-learning in the NEXT lab session to test student
learning performance. Given a forwarding table sample in a bridge, how
would a set of incoming frames be treated by the bridge?

[image: tutorials/pictures/quiz-self-learning.png]
Teaching Journal:
We included the expected submission items in the lab slides:
Progression of an empty forwarding table one by one with mac entries of
the 3 hosts within a GENI sliver – screen snapshots for submission and
call TA/instructor to demo:

		ifconfig per host

		empty table

		Ethernet frame sent per host

		table update each time a new source MAC is learned

		forwarding to a specific port based on the learning results in forwarding table

Submission of results and observations has not been easily defined with clear
guidelines. On one hand, we are trying to prevent a cookie-cutter lab with
very rigid outcome expectations because it does not leave room for the reasoning
and interpretation when submission goals are very well defined. On the other
hand, students struggle to finish the lab within 3 hours time when their
observations and a proper submission preparation takes a long time.

There was a difficult time understanding why we have ssh access to hosts
and no such access to the transparent bridge. A diagram is helpful in
explaining the relationship of all software/application interfaces with the
software systems in GENI.

[image: ../_images/sshVSdatapath.png]
Students were not sure as to what to submit at the end of the lab. There is a
tradeoff between providing what should be submitted in a very clear list of
items such as tcpdump results when such and such happened, send frame and then
copy paste tcpdump at host n, etc. vs letting the free learning phase take hold
for a while. The setup of the experiment in addition to advanced view environment
such as TMUX and other tools blur the actual end goal of observing MAC learning
happen on the transparent bridge and flooding happening on all other ports. We
had to speak to students in every station to emphasize this point. Therefore, we
kept the submission to a simple screenshot of their environment when they sent
frames from each host and observed the forwarding table being populated.

Students requested that the instructor go through the steps of the experiment
on her computer with the screen projected to show how to setup and run the
commands. This helped students understand the mechanics of the sequence of
events and how navigation between the screens of terminals should happen.

 © Copyright 2015, Deniz Gurkan and Nicholas Bastin, University of Houston.
 Created using Sphinx 1.3.5.

_static/comment-bright.png

_static/file.png

project/commontools/bitbucket.html

 Navigation

 		
 index

 		Computer Networking 0.1 documentation »

Bitbucket Version Management

Read more here

		Dr. Gurkan will create a repo per project

		All team members will be members with read/write (all other students in class will
be reading members for each other’s project repo’s)

		Create a public/private key pair and upload public key to bitbucket account

		hg clone repo_name

Edit the .hg/hgrc file inside your repo directory:

[paths]
default = ssh://hg@bitbucket.org/dgurkan/4421f15ospf_plus
[ui]
username = Deniz Gurkan <dgurkan@uh.edu>

For example, if you are part of the HTTP team, you would do this:

hg clone http://bitbucket.org/dgurkan/httpongeni
cd httpongeni
edit your .hg/hgrc file as shown above with your name

Once a .py file has been created in your team repo directory:
hg add httpsetup.py
hg commit -m "new setup design"
hg push

Every time you start to work on your project, you should make sure to update
your repo in case your teammates may have worked on some aspect of the repo:

cd httpongeni
hg pull -u

 © Copyright 2015, Deniz Gurkan and Nicholas Bastin, University of Houston.
 Created using Sphinx 1.3.5.

_static/minus.png

project/commontools/index.html

 Navigation

 		
 index

 		Computer Networking 0.1 documentation »

Common Tools for Projects

		DNS

		Bitbucket Version Management

		Testbed Creation for Network Experiments
		I. Network Topology Reservation on GENI

		II. VM Reservation on GENI

		III. Connecting VMs

		IV. Connecting VMs through a VTS Topology

		Project Management in Teams

 © Copyright 2015, Deniz Gurkan and Nicholas Bastin, University of Houston.
 Created using Sphinx 1.3.5.

intro/geni4421.html

 Navigation

 		
 index

 		Computer Networking 0.1 documentation »

GENI Experimentation

We use the GENI testbed to conduct experiments on
networking concepts to observe the expected protocol behavior we learned about
during the lectures. Hosts will be connected to a network of bridges and routers
through various topologies to investigate how protocols enable connectivity,
troubleshooting, recovery from failure, and various performance guarantees. We
will also learn how to investigate expected performance, behavior, and security
considerations by utilizing tools such as tcpdump, wireshark, scapy, etc.

General introduction to GENI and how resources are managed is posted
here [http://www.nics.utk.edu/~victor/nextgencipapers/6-NextGenCI-MBerman-GENI-Interoperation.pdf].
GENI wiki pages posted at GENI web pages [http://groups.geni.net/geni].

The GENI testbed reservations, experimentation, and data collection will be
achieved using geni-lib python libraries [http://geni-lib.readthedocs.org/en/latest/index.html].
Some sample code using this library is posted
here [https://bitbucket.org/barnstorm/geni-lib/src/0bb942dcbccaa654e13d492e679ea5b912042542/samples/?at=0.9-DEV]
and class-related scripts are posted here [https://bitbucket.org/dgurkan/4421_labs].
These will be continuously updated in the class period to help assist with
lab experiment resource reservations on GENI testbed.

Follow instructions on GENI wiki [http://groups.geni.net/geni/wiki/SignMeUp].
Since GENI testbed is accessible through a recognized identity provider, everybody
needs to join the computerNetworking project using cougarnet account credentials
at GENI portal [https://portal.geni.net/]:

		Click on Use GENI button and select University of Houston as your organization.

		A cougarnet account entry page will appear. Enter your cougarnet id and password
and you will be directed to the GENI portal user page.

		Join my project for the class, called computerNetworking.
More information on what project and other terms mean in GENI is posted on wiki [http://groups.geni.net/geni/wiki/GENIConcepts#Project]

		Under your name, select Profile [https://www.dropbox.com/s/z7k7bz0w52ycaw9/Screenshot%202015-08-16%2023.11.27.png?dl=0].

		Go to SSL tab to create your certificate. Pick the easiest method available to
you on the GENI portal to create a certificate.

		And then go to Configure omni tab within the profile to download
your omni.bundle.

		Once you have downloaded the file omni.bundle, our work with the GENI portal is
complete.

GENI and geni-lib

We use the python library, geni-lib, to interact with the GENI
federation. All geni-lib source code and docs is posted at
geni-lib documentation pages [http://geni-lib.readthedocs.org/].

Labs are conducted using a special virtual machine (compnet VM) with a geni-lib
installation. All students have access to VMware workstation (Windows) or
VMware fusion (MAC) to host this VM on their laptops or their development environment.
Please contact your professor to get this license information from University of
Houston’s IT department.

The compnet VM has:

		geni-lib repo: to be configured by student’s own omni.bundle
from the GENI portal. Students will interface with genish, the python
interactive interpreter with a geni-lib installation, in their
development and lab exercises.

		Lab repo: to be populated by lab scripts as we develop and make them
available to the students in the class. All lab scripts are posted at
the repo bitbucket site [https://bitbucket.org/dgurkan/4421_labs].

Preparation and Useful Background Information:

Familiarize yourself with basic Linux command line interface (CLI) usage. There are
various links to quickly look them up,
such as this one [https://www.linux.com/learn/tutorials/819973-how-to-use-the-linux-command-line-basics-of-cli].

Basic familiarity with python interactive interpreter interface. Basic python
tutorial may provide some introduction to python and the interpreter [https://docs.python.org/2/tutorial/].

Basic understanding the familiarity of ssh mechanism in Linux in addition to
key-based access (rather than login/password). Familiarity with generating personal
public/private key pairs and using them with ssh within Linux. Some example
material is posted here [https://www.digitalocean.com/community/tutorials/how-to-set-up-ssh-keys–2]
and more on ssh is posted here on ssh man pages [http://linux.die.net/man/1/ssh].

MAC users

Have a look at the instructions posted on SSH key generation and usage [https://www.digitalocean.com/community/tutorials/how-to-set-up-ssh-keys–2].
Create a public-private key pair for your compnet VM access using the following steps:

ssh-keygen -t rsa
name the key pair vm_dsa
DO NOT enter a passphrase

Open a terminal application in MAC and go to the .ssh directory. Create
a file called config to add the compnet VM as a host:

Host compnet
 Hostname 192.168.59.130
 User dgurkan
 IdentityFile ~/.ssh/vm_dsa
 Port 22
 ForwardX11 yes

Note

Make sure your keys and the config file are inside the .ssh directory.

After installing the VM in your MAC, power it on in VMware Fusion application.
Once the public key is in your VM, config file in your host is created,
and no login/password, but rather a key-based login is setup, and you will be
able to ssh your compnet VM using a terminal:

ssh -X compnet

Windows users

Windows users will use putty to create and then manage their ssh keys. A handout
to facilitate this has been prepared and shared.

After logging into the compnet VM, Windows users will follow the instructions
listed for MAC users to create their public and private keys and configure their
.ssh directory with a config file to enable ssh’ing into hosts reserved
on GENI.

 © Copyright 2015, Deniz Gurkan and Nicholas Bastin, University of Houston.
 Created using Sphinx 1.3.5.

_images/vlantopology.png

scripts/index.html

 Navigation

 		
 index

 		Computer Networking 0.1 documentation »

Scripts for Tutorial Experiments

In order to run experiments in this tutorial and the projects, use the repo
posted here: https://bitbucket.org/dgurkan/4421_labs

All scripts are using python geni-lib libraries posted at their doc site:
http://geni-lib.readthedocs.org/

 © Copyright 2015, Deniz Gurkan and Nicholas Bastin, University of Houston.
 Created using Sphinx 1.3.5.

_images/key_SSH2.png
pubkey
compnet
VM l phvate
key
VMware WS/F

Laptop or lab PC User/Local 0S: MAC, Windows

private
key
YOUR personal key
that matches this lock

Pubkey
YOUR lock on the door

project/http.html

 Navigation

 		
 index

 		Computer Networking 0.1 documentation »

HTTP

Connect a network topology to a client and a server on end points:

		Involve multiple clients/servers: examine how each client-server connection is handled

		Increase and decrease distance between clients and servers over the network: examine
how network protocols behave

		Change location of servers: within the subnet, neighbor subnet, N subnets over

 © Copyright 2015, Deniz Gurkan and Nicholas Bastin, University of Houston.
 Created using Sphinx 1.3.5.

_images/processPING.png
PING

1GMP Echo Fequest

oes host have 3
rauts o X7

yes

Doss raute nave 3
oatoway?

no

yes

:

nex_nop_tp = g

fenext_nop_sp W

AP tabie? no——>| wake ARP request

yes

i

1GMP Echo Fequest
i dst = X [-yes: ot Responso?
a1 ast = WBE (nexc_nop._tp)

‘sona Packet

_images/lab9observations2.png
Does route have a
gateway?

no
yes

!

next_hop_ip =
nw_dst

next_hop_ip =

gateway

Isnext_hop_ipin

ARP table? no e

tcpdump on router

es
interfaces ¥ *

dl_src = router_mac
dl_dst = MAC(next_hop_ip) <—yes
ip_ttl = ip ttl - 1

Send Packet out

port specified in
route entry

Make ARP request

Get Response?

no—»|

Send ICMP

Unreachable

_images/routerProcessFlow.png
Packet Received

oRor o ‘on router?

Hane i
rouer CPU

gt s rouer
inertace?

Sona icHP
Unveacnatle

Does roue nave 3
gataway?

no
yes
R nex_nop_tp = g

fenext_nop_sp W

AP tabie? no——>| wake ARP request

yes

i

G5 s o
e T

Sona icHP

ot Responsa? no—s{ Somsicue

Send Packet out

portspecited in
Toute ety

_images/vlanPorts.png
4 250
B
vian bridgel 3 —

3

2

" vin

150 & 250

_images/vtsamVMcircuits.png
\ router2

router3

N\, / e

sC\éK —
bridge4

_images/ospf3routers.png
- hostB:
10.10.0.2
q ospﬂ

o n*n lget
7 RSO | et
10.10.1 .3/ hoStG:

10. 101002

bridge3
i e van

hostl:
10.10.200.2

_images/sshUseEx.png
in compnet VM in compnet VM through geni-lib in compnet VM through config file

inside .ssh/

put geni_DG.pub ir-1to .ssh
directory of my hosts

private key and
allow you to login

in compnet VM in compnet VM through .hg/hgrc in compnet VM through hg
inside .ssh/

bitbucket commit interface
to ssh with your name

matching your
private key

_images/lab9observations3.png
tcpdump on router interfaces and
shutdown interfaces to show paths

e taken by ping packets

hostB:
10.10.0.2

g-ospfi

70 etht - emz /?
bridge1

eth3

hostC: hostD: eth4
.10.1. hostG:

101013/
bridge3

= eine
Z
-, =
0 [&

eth1

10.10.100.2

vian
100

hostl

-i 10.10.200.2

_images/sshVSdatapath.png
@ bridgesirouters - interact host n - ssh from
with using genish on VM your local machine

Network Lab Environmei

_images/dnsTopology.png
Private domain: cn4421.uh
Each host: vmN.cn4421.uh

bridas0 mms 11047

B bss.quagga £

O R
o\

ﬁ "

DNS server

_images/routerOnStick.png

_images/self-learning4.png
]
transparent

bridge

eoce 7 dgurkan — root@7cb10b94dbea: ~ — tmux — bash — 86x17

frame = (src = "ba:74:97:13:b3:b6", dst = "26:
SyntaxError: invalid syntax
>>> frame = Ether(src = "ba:
>>> sendp(frame, iface = "eth

7:13:b3:b6", dst = "26:c3:fd:04:b0:3b")

)

Sent 1 packets.
55>

root@7cb1@b94dbea:~# tcpdump -i ethl —e

tcpdump: WARNING: ethl: no IPv4 address assigned

tcpdump: verbose output suppressed, use -v or -vv for full protocol decode

listening on ethl, link-type EN1OMB (Ethernet), capture size 65535 bytes
©3:03:29.326716 ba:74:97:13:b3:b6 (oui Unknown) > 26:c3:fd:@4:b@:3b (oui Unknown), 862
.3, length 14: [|1llc]

m

_images/vtsam.png
idge2
router!
G o
&

br\d%es

T
router2 \
/\
P— s
bridge4

router3

_images/geniand4421lab.png
(.-aLENlra_cK|||

Lab 202 station

_images/vlansProcessFlow.png
‘Well-formed Pack
Roceived

Has VLAN tag? yes—
no
b4

T101s valid for
this in_port?

no—»|

yes

Untagged

o accepted on this

s
v v

aa
configured? ~>—no—| o - o no—s| (v1a, tn_port, @i
0 matcn table
yes yes
o

L] P

out_pore_tist = (num) out_pore_tiat = (vian_porte]

0 —

yes

'

port = pop(our_port_ite)

!

umaggea ors

yes—| smpuio

_images/self-learning3.png
BRIDGE: ‘dp0’

=

transpar
bridge

_images/context_bundle.png
run in VM genish

download run in VM at geni-lib/
from web: iy
context-from-bundle
create ‘work environme
using ssh
key copy into VM

generation
tools:

_images/computeTopology.png
Ink = PG.Link()
Ink addinterfacefint1)
Ink addinterfacefintf2)

server = IGX XenVM(‘server’) | client = IGX XenVM(‘client’)

intf2 = client.addinterface(“if0’

intf1 = server.addinterface("if0")
GENI L2 Cloud

_images/simpleTopologyAssignment.png
forwarding table

port | MAC

N (NN (P[P

_images/vlansubnetTopology.png
1oo 1 2 200

vlan
bridge2 100 & 200
/k vlan \ bridge1 \W\ ;
100 vian || .0/24

vlan vlan 3
! 0 100 & 200 100

200 ; 2/24
D 3/24

b

